
LTR212 Strain-gauge module
Programmer manual

Multichannel data-acquisition systems

DAQ SYSTEMS DESIGN, MANUFACTURING & DISTRIBUTION

http://en.lcard.ru
en@lcard.ru

Revision 1.0.4
November 2013

http://en.lcard.ru
mailto:en@lcard.ru

L-Card LLC
117105, Moscow, Varshavskoye shosse, 5, block 4, bld. 2

tel.: +7 (495) 785-95-19
fax: +7 (495) 785-95-14

Internet contacts:
http://en.lcard.ru/

E-Mail:
Sales department: en@lcard.ru
Customer care: en@lcard.ru

LTR-212. Specialized strain-gauge module
© Copyright 1989–2013, L-Card, LLC. All rights reserved.

http://en.lcard.ru/
mailto:en@lcard.ru
mailto:en@lcard.ru

Revision history of this document.

Revision Date Notes to the updates

1.0.0 23.01.2006 The first revision available for user

1.0.1 07.03.2006 Module description structure is revised.

1.0.2 21.11.2006
Changes were made in the format of the module description
structure and field names in order to unify the software interface
of all modules

1.0.3 01.03.2010
New calibration mode is added. User-specific PROM calibration
storage and record functions are added.

1.0.4 01.09.2013

Information on new module modifications is added. Module
description structure is revised (field Type of TINFO_LTR212
structure is added). Logic channel format is revised (field Bridge
connection type is added). New function
LTR212_CreateLChannel2() is introduced.

The latest revision of this document is always being written on the CD-ROM included in the delivery
package. Besides, you can find the latest revision in the section of the File library on our website.

 LLC "L-Card" reserves the right to update the documentation without prior notification of users.

http://en.lcard.ru/download/
http://en.lcard.ru/download/

Contents

1 Module LTR-212 essentials. .. 5
1.1 What's the news? .. 5

1.1.1 2013 .. 5
2 General information of Library LR212API. ... 6

2.1 Module description structure. .. 6
2.2 User-defined library functions. ... 6

2.2.1 Classification of library functions. .. 6
2.2.2 A typical sequence of program writing. .. 8

3 Detailed description of Library LTR212API. ... 9
3.1 Module description structure. .. 9

3.1.1 Module identification information .. 11
3.1.2 User-specific calibration data storage structure ... 11

3.2 Logical Channel Table ... 12
3.3 Description of the Ltr212api library function. ... 15

4 Data acquisition process characteristics. ... 21
4.1 Data acquisition cycle formation .. 21
4.2 Data acquisition mode characteristics. ... 24

5 Module calibration. ... 25
5.1 Calibration modes. ... 25
5.2 Different calibration modes usage pattern.. 27

6 Digital filtration. ... 29
6.1 Digital filters used in the module LTR212. .. 29
6.2 Software filters application ... 29

7 PROM check. .. 30
Annex 1. Examples of code writing... 31

P1.1 Configuration examples. .. 31
P1.2. An example of an application. .. 33

Annex 2. Protocol of data exchange with the module. .. 39

1 Module LTR-212 essentials.

Strain-gauge module LTR-212 has three basic operating modes: 4-link with mean accuracy, 4-link with
high accuracy and 8-link with high accuracy. Whereby reference voltage value may be specified (2.5
V or 5 V) and selecting its type: constant or alternating. When operating on each of mode the digital
filtration of collected data is performed. Module allows for program zero and range calibration
compensating signal displacement and amplification errors. Calibrating registers ADC AD7730 and
calibrating DAC integrated in the microchip are involved in zero calibration process. Calibrating registers
ADC are used only for range calibration. Data acquisition and calibration mode control, programming of
ADC AD7730, reading of data obtained from ADC registers and buffering in FIFO of crate-controller
shall be performed by module-mounted Digital Signal Processor ADSP-2185M. The processor has an
individual low level software hereinafter referred to as BIOS.

1.1 What's the news?

Generally this paragraph shall contain only essentials of module revision. Refer to Chapter 6 of "LTR
Crate System for detailed information. User Manual"

1.1.1 2013

LLC "L-Card" (based on generic user stories over the course of modules LC-212 and LTR-212 release history)
in 2013 has released new module modifications: LTR-212M-1, LTR-212M-2 and LTR-212M-3.
In the description, the following abbreviated designations are introduced:

• LTR-212 − previous modification released up to 2013;
• LTR-212M – any new modifications LTR212M-1, LTR212M-2 and LTR212M-3;
• LTR-212(M) – any modification: LTR212, LTR212M-1, LTR212M-2 and LTR212M-3.

http://en.lcard.ru/download/ltr.pdf
http://en.lcard.ru/download/ltr.pdf
http://www.lcard.ru/download/ltr.pdf

2 General information of Library LR212API.

From a software point of view any interaction with the module shall be performed via library of user-
specific functions Ltr212api.
The sequence of application of these functions is similar to using equivalent functions in the software of
other modules of the LTR system. In general, this sequence can be described as follows:

- Initialization of the communication interface with the module, setting the default settings;
- BIOS downloading (low level Software) into internal memory of Digital Signal Processor ADSP-

2185M;
- Parameter setting (data acquisition link coding, determination of data acquisition or calibration

modes);
- Acquisition start;
- Acquisition and data processing (frequently this process is cyclic);
- Acquisition stop;
- Closing of the communication interface with the module.

The library of user interface functions contains the following general components: a module description
structure and a set of functions for module communication and operation.

2.1 Module description structure.

The module description structure (type TLTR212) is designed for initialization, storage and change of
information about module configuration within the whipped out code. The structure members allow for
setting of data acquisition mode, identification of calibration factors application, generation of information
about involved data acquisition links and related voltage range of input signal. The structure also
incorporates substructure that contains information about program filters. Prior to call of
(LTR212_SetADC()) module configuration function, it is necessary to fill the fields of the module
description structure. Otherwise, the module would generate wrong data.

2.2 User-defined library functions.

Functions of the Ltr212api library are intended for configuration, programming, data acquisition and
diagnostics of the module.

2.2.1 Classification of library functions.

Functions integrated in the user-defined library LTR-212(M) of the module may be divided in the
following groups:

- Initialization and opening functions;
- Configuration functions;
- Data acquisition functions;
- Calibration function;
- Closing function;
- Auxiliary functions.

The initialization and opening functions include functions LTR212_Init() and LTR212_Open(). They
should be called first. They are intended to fill the module description structure members with values by
default, open interface communication link with the module, download BIOS into DSP module and
perform the required checks. Without calling this functions, the further work with the module is
impossible.

Configuration functions – LTR212_CreateLChannel(), LTR212_CreateLChannel2() and
LTR212_SetADC(). Function LTR212_CreateLChannel() allows for creation of logic channel table,
i.e. bonding of physical channels of the module and corresponding voltage ranges of input signal, and
determination of physical channels involved in data acquisition or otherwise. Function

LTR212_CreateLChannel2() which may set type of bridge connection pattern for sensors (for LTR-
212M-1) may be used as well. Function LTR212_SetADC() transmits all configuration parameters
recorded in module description structure members, in module DSP which in turn performs programming
of on-board ADC AD7730. After the indicated functions are completed, the device is ready for data
acquisition.

Data acquisition functions: LTR212_Start(), LTR212_Stop(), LTR212_ProcessData(). are intended
for acquisition start and stop, for validation of data received fro the module, and for recalculation from
ADC codes to voltage values (V).

Calibration function: LTR212_Calibrate(). Used for module calibration. The function arguments
determine calibration mode and channels for which it should be done.

Auxiliary functions: LTR212_GetErrorString() returns error string corresponding to the error code;
LTR212_CalcFS() returns acquisition frequency; LTR212_TestEEPROM() verifies data integrity in the
module PROM.

Closing function: LTR212_Close(). It is called upon the module shutdown to close the interface channel.
For clean termination of the module it is necessary to call this function.

2.2.2 A typical sequence of program writing.
When programming module one should comply with the diagram specified below.

Fig. 1

Closing the interface channel of the module

Function call LTR212_Close()

Data acquisition start
Function call LTR212_Start()

Data acquisition
Function call LTR212_Recv()

Data validation and conversion of ADC codes into
voltage (V) if (required) example, other activities

related with data (for example, visualization).
Call of function LTR212_ProcessData()

Data acquisition stop;
Function call LTR212_Stop()

Calibration
Function call LTR212_Calibrate()

Transmission of acquisition parameters
Function call LTR212_SetADC()

Module configuration.
- Inputting table of logic channels LchTable[] using functions LTR212_CreateLChannel() or
LTR212_CreateLChannel2();
- Inputting values into other members of the module structure description with values that comply with the required
acquisition mode

Initialization and opening
- Creation of an instance of the module description structure, type TLTR212;
LTR212_Init() - creation of interface channel for communication with the module and inputting members of the module
structure description with default values.
LTR212_Open() - opening of interface channel for communication with the module, BIOS downloading into DSP of the
module, performance of required initial verification.
LTR212_TestEEPROM() - check of the integrity information written to the module PROM.

3 Detailed description of Library LTR212API.

 This paragraph shall cover user-specified library Ltr212api components in detail.
 To call the library Ltr212api interface functions using your application follow the procedure

mentioned below:
 to create the project in any of the development environment;
 insert a file ltr212api.dll into the project folder or the folder described in PATH environment
variable.
 to add information on interface function call of dll-library and used data types to the project. The

sequence of actions and applied force may vary in different development environments: Borland
C++/Borland C++ Builder :
- link files LTR\LIB\BORLAND\ltr212api.lib and LTR\INCLUDE\ltr212api.h with the

project; Microsoft Visual C++ :
- link files LTR\LIB\MSVC\ltr212api.lib and LTR\INCLUDE\ltr212api.h with the project;

Other development environments:
- it is necessary to refer to the corresponding documentation of the development tool.
 create and link file with the original text of the future program with the project;
 after that you can write your program by calling the corresponding interface functions of the dll-

library.

3.1 Module description structure.
Fields of the structure contain information on involved module channels, acquisition or calibration modes,
use of calibration factors, program filters connection and other data. Structure definition is shown below:
typedef struct
{
 int size; // Structure size
 TLTR Channel; // Interface channel for communication with the module
 INT AcqMode; // Acquisition mode
 INT UseClb; // Calibration factor application flag
 INT UseFabricClb; // Factory calibration factor application flag
 INT LChQnt; // Quantity of logic channels
 INT LChTbl[8]; // Logical Channel Table
 INT REF; // Reference voltage selection flag (0->2.5V, 1->5V)
 INT AC; // Alternating reference voltage selection flag
 double Fs;

 struct
{

// Reporting frequency

 INT IIR; // Infinite-impulse response filter application flag
 INT FIR; // Feedback filter application flag
 BYTE Decimation; // Feedback filter decimation gain
 BYTE TAP; // Tap procedure (quantity) of feedback filter
 CHAR IIR_Name[512+1]; // Full path of infinite-impulse response filter
 CHAR FIR_Name[512+1]; // Full path of feedback filter
 } filter; // Structure that stores program filter data

 TINFO_LTR212 ModuleInfo // Module identification information
 WORD CRC_PM; // for internal use

 WORD CRC_Flash_Eval; // for internal use
 WORD CRC_Flash_Read; // for internal use
} TLTR212, *PTLTR212; // module description structure

Here's the description of the structure members.

Table 1

Field Type Description

size INT memory capacity, allocated for the structure

Channel TLTR
the structure, which is a description of the interface
channel for communication with the crate controller;

AcqMode INT
Determines acquisition mode. "0" - 4-channel, mean
accuracy, "1" - 4-channel high accuracy, "2" - 8-channel
high accuracy.

UseClb INT

Determines if calibration factors stored in calibration area
of the module PROM should be used in acquisition. "0" -
calibration factors are not used. "1" - calibration factors
are used.

UseFabricClb INT

If this flag is set then upon invocation of configuration
LTR212_SetADC() download factory calibration factors
corresponding to each involved channel range shall be
automatically downloaded into ADC registers AD7730

LChQnt INT
The number of used logic channels. Refer to the
Chapter 3.2 for clarification of the notion "logic
channel.

LChTbl[8] INT
Logical Channel Table Refer to the Chapter 3.2 for

clarification of the notion "Logical Channel Table".

filter Structure of program filter parameters

fields
IIR INT

Determines if the infinite-impulse response filter is
involved "0" – filter OFF, "1" – filter on

FIR INT
Determines if the feedback filter is involved "0" – filter
OFF, "1" – filter on

Decimation BYTE
Decimation gain used with the applied feedback filter.
This factor is hard-linked with the specific filter.

TAP BYTE
Tap procedure (quantity) of applied program filter

IIR_Name[51 2+1] CHAR
The string which is a full name of the file with factors of
infinite-impulse response filter

FIR_Name[5
]

12+1
CHAR

The string which is a full name of the file with factors of
the feedback filter

ModuleInfo TINFO_LTR212
Module identification information. This type is the
structure which description is provided below in this
chapter.

REF INT
Determines the value of reference voltage: "0" -
2.5 V, "1" - 5.0 V.

AC INT

Alternating reference voltage application flag. "1" –
alternating reference voltage is used, "0" – dc reference
voltage is used

Fs INT
Reporting frequency (Hz). This field shall be
automatically filled after invocation of the function
LTR212_SetADC()

To set the module operating mode the user must manually determine the following fields of the structure:
AcqMode, UseClb, UseFabricClb, LChQnt, LChTbl, filter.FIR, filter.IIR, filter.IIR_Name,
filter.FIR_Name, REF, AC. Other fields shall be filled automatically upon invocation of different
functions. Examples of configuration setting are set out at the end of this manual.

3.1.1 Module identification information

The structure contains all necessary operating information about applied module after execution of the
function LTR212_Open():
typedef struct
{
 CHAR Name[15]; // module name string
 BYTE Type; // module modification type: LTR-212 (LTR-212M-3),
 // LTR-212M-1 or LTR-212M-2
 CHAR Serial[24]; // string with serial number of the module
 CHAR BiosVersion[8]; // string with the BIOS version
 CHAR BiosDate[16]; // string with date of BIOS creation
} TINFO_LTR212, *PTINFO_LTR212;
 The field Type contains information of the current type of used module modification:

 Table 2

Module modification Type Mnemonics

LTR212 or LTR212M-3 0 LTR212_OLD

LTR212M-1 1 LTR212_M_1

LTR212M-2 2 LTR212_M_2

3.1.2 User-specific calibration data storage structure

typedef struct
{
 DWORD Offset[MAX_212_CH]; // Offset factors for 8 channels

 DWORD Scale[MAX_212_CH]; // Scale factors for 8 channels
 BYTE DAC_Value[MAX_212_CH]; // Codec gaging DAC value }
TLTR212_Usr_Clb;

Calibration information in this structure is stored in internal codec format AD7730.
Direct modification is not advisable without insight into coded operation features.

3.2 Logical Channel Table
One of the module structure description fields – Logical Channel Table – is an array with information
of physical channels of the module, corresponding acquisition ranges and bridge circuits, and defines
channel polling sequence.
Logic channel is a 32х bit word which format is set out below:

Table 3

Bits 31÷28 27÷20 19÷16 15÷4 3÷0

Intended
purpose

Type of bridge
connection Reserved

Number of
physical
channel

Reserved
Input voltage

range

 Type of bridge connection sets bridge circuit for connection of sensors to the module.

Table 4

Type
of bridge

connection
Mnemonics Value

0 LTR212_FULL_OR_HALF_BRIDGE
Full- and half-bridge circuit. For
modules LTR-212(M).

1
LTR212_QUARTER_BRIDGE_

WITH_200_Ohm

Quarter-bridge circuit with an internal
resistor 200 Ohm. Only for modules
LTR-212M-1.

2
LTR212_QUARTER_BRIDGE_

WITH_350_Ohm

Quarter-bridge circuit with an internal
resistor 350 Ohm. Only for modules
LTR-212M-1.

3
LTR212_QUARTER_BRIDGE_

WITH_CUSTOM_Ohm

Quarter-bridge circuit with an external
resistor 180÷1000 Ohm on submodule
LTR212H. Only for modules LTR-
212M-1.

4
LTR212_UNBALANCED_QUARTER_

BRIDGE_WITH_200_Ohm

Similar to connection 1 only upon rated
disbalance of quarter-bridges. Only for
modules LTR-212M-1.

5
LTR212_UNBALANCED_QUARTER_

BRIDGE_WITH_350_Ohm

Similar to connection 2 only upon rated
disbalance of quarter-bridges. Only for
modules LTR-212M-1.

6
LTR212_UNBALANCED_QUARTER_

BRIDGE_WITH_CUSTOM_Ohm

Similar to connection 3 only upon rated
disbalance of quarter-bridges. Only for
modules LTR-212M-1.

Crucially that the quarter-bridge circuit for sensor connection may be used only on module LTR-212M-1
and only in initial 4x physical channels. Whereby all logic channels where quarter-bridges are used shall
involve similar type of bridge connections. In this regard connection types 1 and 4 may be considered
compatible, as well as types 2 and 5 or 3 and 6.

A physical channel is a hardware data input channel used to connect an electrical signal to the LTR-
212(M) module. The module has got 8 physical channels. Complete information on these channels is
indicated in book "LTR Crate System. User manual".
 Input voltage range codes are specified below:

 Table 5

Input range code
Range

0 -10 mV/+10mV

1 -20 mV/+20mV

2 -40 mV/+40mV

3 -80 mV/+80mV

4 0mV/+10mV

5 0 mV/+20mV

6 0 mV/+40mV

7 0 mV/+80mV

A logic channel table is an array, each element of which is a logic channel. All components of this table
define those physical channels which shall transmit data after start and corresponding input signal voltage
range. Filling of this array (logic channel table) is performed by the user. To create the logic channel the
function LTR212_CreateLChannel() shall be called indicating in parameters number of the physical
channel connected with this logic channel and the code of related range. The function returns the generated
value of the logic channel, which should be written to the table manually. It is not necessary to arrange
sequentially, in ascending order of physical channel numbers, the elements corresponding to different
physical channels of the module in the logic channels table. Elements with more significant indices shall
correspond to physical channels with more significant numbers. If this stipulation is not met the further
function LRT212_SetADC()call shall fail. Upon operation of the module data shall be acquired only from
channels included in the table concerned. Data received from other channels shall be ignored. The
LChQnt module description structure field must contain the number of logic channels involved (it is also
the number of logic channel table elements). In four-channel operating mode (AcqMode=0 and

http://en.lcard.ru/download/ltr.pdf
http://en.lcard.ru/download/ltr.pdf
http://www.lcard.ru/download/ltr.pdf

AcqMode=1) maximum number of logic channels is equal to 4. In eight-channel mode (AcqMode=2) is
equal to 8.
Upon operation of the module data acquired from channels shall be obtained in a sequence determined by
the logic channel table.
 An example of correct configuration of the logic channel table in 8-channel mode:
LChQnt=6;
LChTbl[]:

Element index
(logic channel No.) Physical channel Range

Logic channel value
(Hex)

0 1 0 (-10 mV/+10mV) 0x00010000

1 2 0 (-10 mV/+10mV) 0x00020000

2 4 3 (-80 mV/+80mV) 0x00040003

3 5 6 (0 mV…+40mV) 0x00050006

4 7 4 (0 mV…+10mV) 0x00070004

5 8 3 (-80 mV/+80mV) 0x00080003

 i.e. the array LChTbl shall be as follows:

0x00010000

0x00020000

0x00040003

0x00050006

0x00070004

0x00080003
 It is apparent that physical channels 3 and 6 are not included in the table. Consequently, no data from
these channels shall be displayed in the array received from the module during acquisition. These channels
may be considered shut down. Within the given context physical channel polling and data location in the
input array upon acquisition are specified below; figures indicate the number of physical channel whereof
each element of the input array (data package) is received.

 1 – 2 – 4 – 5 – 7 – 8 – 1 –2 – 4 – 5 – 7 – 8 – 1 – 2 – 4 – 5 …….

 Detailed information of input array and data location in it shall be specified below in Chapter 4.1.

3.3 Description of the Ltr212api library function.

Format: INT LTR212_Init(PTLTR212 hnd)
Parameter: hnd – pointer to the module description structure (type PTLTR212)
Description: Initializes the interface channel for communication with the module and fills in the fields of the
module description structure with default values. Below are the values by which this function initiates the
fields of the specified structure:

hnd->size=sizeof(TLTR212); // Structure size
hnd->AcqMode=1; // 4-channel mode of high accuracy acquisition mode
hnd->UseClb=0; // Editorial factors are not used
hnd->UseFabricClb=0; // Factory calibration factor direct use mode
 // is not operated
hnd->LChQnt=4; // Quantity of logic channels is equal to 4
 // Initialization of the logic channel table Four channels are
set by default
 // with input signal voltage range –80 mV/+80 mV
hnd->LChTbl[0]=LTR212_CreateLChannel(1, 3);
hnd->LChTbl[1]=LTR212_CreateLChannel(2, 3);
hnd->LChTbl[2]=LTR212_CreateLChannel(3, 3);
hnd->LChTbl[3]=LTR212_CreateLChannel(4, 3);
hnd->filter.IIR=0; // Program filters OFF
hnd->filter.FIR=0;
hnd->filter.Decimation=0; // switch off filter decimation
hnd->filter.TAP=0; // Filter order - 0
hnd->Fs=150.15; // Acquisition frequency for the mode

 // Prior to invocation of function LTR212_Open() the following fields shall be blank
strcpy((CHAR *)hnd->ModuleInfo.Serial, "\0"); // Serial number by default
strcpy((CHAR *)hnd->ModuleInfo.BiosVersion, "\0"); // BIOS version by default
strcpy((CHAR *)hnd->ModuleInfo.BiosDate, "\0"); // BIOS date by default
strcpy((CHAR *)hnd->ModuleInfo.Name, "\0"); // Module name by default
Returned value: error code, type int. If "0" – bug-free function

Format: INT LTR212_IsOpened(PTLTR212 hnd)
Parameter: hnd – pointer to the module description structure, type TLTR212
Description: The function enables monitoring of the module connection status: if the returned result varies
from 0, there is no connection.
Returned value: If "0" – interface channel for communication with module is created and opened. If the
value is nonzero, the channel is not created.

Format: INT LTR212_Open(PTLTR212 hnd, DWORD net_addr,
 WORD net_port, CHAR *crate_sn, INT slot_num, CHAR *biosname)
Parameters:
- hnd – pointer to the module description structure (type PTLTR212)
- net_addr – network server address A.B.C.D in HEX format: 0xABCD. For example, net_addr for

address 127.0.0.1 shall be as follows: 0x7F000001. One should bear in mind that all address

components shall have a value not exceeding 255. - net_port – network server port - crate_sn – serial
number of crate.

- slot_num – number of slot where the module is located (numeration starts from figure one!)
- *biosname – full path to file containing a program for DSP (BIOS). BIOS file supplied by the company

is named ltr212.bio. Full path to this file in the user's file system shall be indicated in this function.
One should bare in mind that according to the language syntax "S", Symbol '\' shall be replaced to "\\"
in strings.

Description: The function opens the interface channel for communication with the module, downloads BIOS
program into the module DSP, performs necessary checks, and reads its identification record from the PROM
of the module. After function operation the following information shall be indicated in corresponding fields
of the module description structure: BIOS number, date of BIOS issue, module name, type and serial number.
Returned value: error code, type int. If "0" – bug-free function. If the return value is –10, then this is a
warning that the interface channel is already open. Nevertheless, the function succeeded and you can continue
work. However the further module operation can be incorrect. It is recommended to understand reasons of
the warning and close previously opened channel.

Format: INT LTR212_CreateLChannel(INT PhysChannel, INT Scale)
Parameters:
- PhysChannel – number of physical channel corresponding to created logic channel. Numeration starts

from figure one;
- Scale – input signal voltage range for this physical channel.

Description: The function creates a logic channel, i.e. generates a 32-bit word that should be written to the
corresponding cell in the logic channel table. Refer to Chapter 3.2. of this Manual to get more information on
the word format.
Returned value: Generated value of the logic channel, type int.

Format: INT LTR212_CreateLChannel2(INT PhysChannel, INT Scale, INT BridgeType)
Parameters:
- PhysChannel – number of physical channel corresponding to created logic channel.

Numeration starts from figure one;
- Scale – input signal voltage range for this physical channel; - BridgeType – type of bridge

connection.
Description: The function creates a logic channel, i.e. generates a 32-bit word that should be written to the
corresponding cell in the logic channel table. Refer to Chapter 3.2. of this Manual to get more information
on the word format.
Returned value: Generated value of the logic channel, type int.

Format: INT LTR212_ SetADC(PTLTR212 hnd)
Parameter: hnd – a pointer to description structure of the module PTLTR212
Description: Channel data and acquisition mode data transmission function. Information of used physical
channels, ranges, filtration mode is downloaded into DSP memory storage and ADC registers AD7730
installed on the module board. If calibration factors are used the function shall download them into calibration
ADC registers AD7730 corresponding to required channels. When using program filters their factors shall
be downloaded to internal memory of the module DSP. Prior to use of this function all fields of the module

description structure shall be filled with required values. Acquisition start should be initiated only after
execution of this function.
Returned value: error code, type int. If "0" – bug-free function

Format: INT LTR212_Start(PTLTR212 hnd)
Parameter: hnd – a pointer to description structure of the module PTLTR212
Description: Executes acquisition start. Prior to the function call it is necessary that the function
LTR212_SetADC() is executed.
Returned value: error code, type int. If "0" – bug-free function

Format: INT LTR212_Stop(PTLTR212 hnd)
Parameter: hnd – a pointer to description structure of the module PTLTR212
Description: Executes acquisition stop.
Returned value: error code, type int. If "0" – bug-free function

Format: INT LTR212_Recv(PTLTR212 hnd, DWORD *data, DWORD *tmark,
 DWORD size, DWORD timeout)
Parameter: hnd – a pointer to the structure of the module description PTLTR212;
 *data – a pointer to the array with input data;
 *tmark – a pointer to the array with the second mark and a mark START;
 size – quantity of words in requested data array;
 timeout – function timeout (millisecond) for requested number of words
Description: Executes acquisition of the words array from the module with the size size. Words received at
the function output contain in an array, addressed by the pointer data. The pointer tmark addresses the array
containing labels (Second and START), if any. If the elements of this array are not used in the program,
then, as the tmark parameter value, NULL may be used. The parameter timeout defines time in
milliseconds within which the function shall wait for the number of words to be retrieved. If the required
amount is received before the timeout expires, the function terminates immediately. If the required amount
of words has not been received after the timeout, the function shall still be terminated. The return value of a
function is the amount of words received from the module. If the return value is negative, then this indicates
an error. In this case, you should identify the error with the function
LTR212_GetErrorString().
 Note: The description of this function corresponds to the description of the crate-controller's ltrap.dll library
function LTR_Recv().
Returned value: If the value is positive or equal to 0, then it corresponds to the number of words received
from the module. If it is negative, then it is an error code.

Format: INT LTR212_ProcessData(PTLTR212 hnd, DWORD *src,
 double *dest, DWORD *size, BOOL volt)
Parameters:
- hnd – a pointer to description structure of the module PTLTR212
- *src – a pointer to the array of data received from the module via previously called function

LTRRcv().
- *dest – a pointer to the array whereto input data generated by the concerned function shall be recorded.

- volt – flag of conversion of received ADC code values into voltage value (V).
- *size – a pointer to the data array size variable
Description: The function allows for check of data received from the module and their transformation from
the internal format of LTR system directly into code received from ADC. The function also is capable of code
conversion into voltage (V) in accordance with ranges selected for applied channels. src[] – data array
acquired from the module via previously called function LTR_Recv(). The function compares channel
sequence defined upon generation of logic channel table with sequence required directly from module. In
case of non-conformity the function shall suppress frame where the conformity was detected and it shall be
replaced with the next one in the output array dest[]. "Error" frame shall be deleted in whatever point the
required channel sequence has failed. Nonetheless the function returns the error despite that the array is
adjusted and in fact further operation is possible. The function traces state of sent data package counter. In
case of its failure the function shall not interrupt operation, but it shall return an error, and the output array is
generated by rules specified above. As a parameter src array of any length may be added to this function and
any number of points may be processed (determined by size parameter), but one should keep in mind that a
number of processed points shall be in multiples of quantity of used channels. Otherwise the function shall
terminate with an error.
dest[] – an array whereto input data generated by the concerned function shall be recorded. Herewith the
function deletes all operating fields from the input array components. If volt parameter is equal to "0" the
output array is a sequence of codes received from the module ADC frame by frame, i.e. in order in compliance
with the logic channel table. If volt parameter is null then the output array shall contain volt values calculated
per channel ranges set out in logic channel table. It should be noted that in both cases the output array dest[]
is type double.
size – at the function inlet this value corresponds to quantity of the input array components src[]. If upon data
validation check the concerned function has not detected any failure in sample sequence, then after the
function completion the size parameter value shall be reduced by half (as each sample in initial array was
determined by two adjacent components). If error frames were detected and deleted then the size value shall
be less, as quantity of the output array components shall reduce through removal of error frames. In this case
the size parameter shall match half size of the input array Refer to Chapter 4.1 for more detailed information
Returned value: error code, type int. If "0" – bug-free function

Format: INT LTR212_Calibrate(PTLTR212 hnd, BYTE *Lchannel_Mask, INT
mode, INT reset)
Parameters:
- hnd – a pointer to the structure of the module description PTLTR212;
- *LChannel_Mask – a pointer to the logic channel mask subject to calibration It is a bite where numbers

of on-bits coincide with numbers of logic channels subject to calibration. For example,
LChannel_Mask=0x93 (10010011 in binary system) indicates that logic channels 0, 1, 4, 7 are subject
to calibration. These channels are calibrated simultaneously. In case of successful calibration of all
channels the mask value returned from function shall not change. This parameter may vary only in case
of zero output calibration failure if the integrated DAC value does not match. Then mask bits conforming
to uncalibrated channels remain equal to one. Bits conforming to calibrated channels are equal to 0.
Hereby in case of error function completion it can be observed which channels were not calibrated. It
should be noted that at the first calibration error the function terminates, and calibration of other channels
is failed. In case of successful calibration of all channels the mask value shall not change.

- mode – calibration mode;
- reset – reset flag for all ADC AD7730 prior to calibration. "1" - all ADC are reset, "0" - are not reset.
Description: Performs calibration of specified logic channels followed by calibration factor record to the
module PROM. Refer to Chapter 5 "Module calibration characteristics" for detailed information about
calibration modes. Prior to calibration logic channel mask subject to calibration should be determined.

Returned value: error code, type int. If "0" – bug-free function

Format: LPCSTR LTR212_GetErrorString(INT Error_Code)
Parameters:
- Error_Code – error code;

Description: Returns a string describing the error corresponding to the code Error_Code
Returned value: string corresponding to this error code

INT LTR212_CalcFS(PTLTR212 hnd, double *fsBase, double *fs)
Parameters:
- hnd – a pointer to the structure of the module description PTLTR212;
- *fsBase – a pointer to the ADC discreteness frequency vale upon acquisition;
- *fs – a pointer to the data output frequency value
Description: Returns data output frequency. When using 4-channel mean accuracy mode without program
filters and 4-channel high accuracy mode this frequency matches ADC discreteness frequency. When using
feedback filter fsBase – ADC discreteness frequency and fs is less than fsBase by a factor equal to decimation
factor (fs=fsBase/hnd->filter.Decimation). In eight-channel mode fsBase – ADC discreteness frequency in
the hardware digital filter tapping, fsBase=150.15 Hz, fs – data output frequency equal to approximately
3.4 Hz.
Returned value: -----------

INT LTR212_CalcTimeout(PTLTR212 hnd, DWORD n)
Parameters:
- hnd – a pointer to the structure of the module description PTLTR212;
- n – number of points per channel.
Description: Returns maximum time in milliseconds during which the function LTR212_Recv() shall wait
for data if a number of points per channel is equal to n. The function calculates timeout via the mode set in
the module description structure.
Returned value: maximum time in milliseconds during which the function LTR212_Recv() shall wait for
data.

Format: INT LTR212_TestEEPROM(PTLTR212 hnd)
Parameters:
- hnd – a pointer to description structure of the module PTLTR212

Description: The function controls integrity of data recorded in the module PROM.
Returned value: error code, type int. If "0" – bug-free function

Format: INT LTR212_ReadUSR_Clb (PTLTR212 hnd, TLTR212_Usr_Clb *CALLIBR)
Parameters:
- hnd – a pointer to the structure of the module description PTLTR212;
- CALLIBR – a pointer to the structure for user-defined calibration saving

Description: Function reading user-defined calibrations from the module PROM.
Returned value: error code, type int. If "0" – bug-free function

Format: INT LTR212_WriteUSR_Clb(PTLTR212 hnd, TLTR212_Usr_Clb *CALLIBR)
Parameters:
- hnd – a pointer to the structure of the module description PTLTR212;
- CALLIBR – a pointer to the structure containing user-defined calibrations

Description: Function recording user-defined calibrations to the module PROM.
Returned value: error code, type int. If "0" – bug-free function

Attention!!! Do not confuse data types: module description structure (type TLTR212) and a POINTER
module description structure (type PTLTR212).

4 Data acquisition process characteristics.

4.1 Data acquisition cycle formation
Acquisition start and stop are executed by functions LTR212_Start() and LTR212_Stop(). Data array
reading received from the module is executed by the function LTR_212Recv(). In this function the
parameter hnd – a pointer to the module description structure *data – a pointer to the array whereto the
module data shall be recorded. size – number of data words requested from the module. Parameter *tmark
is a pointer to the array of synchromarks. If no sync marks are applied it may be put as NULL. The timeout
parameter specifies the maximum waiting time for the requested number of data words in milliseconds.
The function returns the number of words received. If the value returned by the function is negative, this
indicates that the function completed with an error and returned its code. In this case, you need to call the
LTR212_GetErrorString() function to define the error by using its code as a parameter.

One should bear in mind that whereas this module contains 24-bit ADC then 2 data words are required
for transmission of each sample; one word contains the most significant bite of 24-bit sample, and another
word - the average and least-significant bytes. Therefore double quantity of received words shall be set
in the function LTR212_Recv() regarding to quantity of collection points from which information is
requested.

 In the resulting array, the data is arranged frame by frame. Frame is a sequence of data words received
upon execution of a single polling cycle for all channels used. Data is arranged in the frame in the order
of polling of physical channels, i.e. in ascending order. Each input array frame contains the number of
components equal to twice the number of involved channels. Frame content shall be determined by the
logic channel table as it indicates which channels are on, and which channels are off.

After receiving data array from the module by the function LTR212_Rcv() delete all operating fields
from its components, validate received data and convert ADC code values to signal voltage values in volts,
if required, per input voltage ranges for each channel. For this purpose the following function is used

LTR212_ProcessData(*hnd, *src, *dest, *size, volt). Its parameter *src is a pointer to initial data array
previously received by the function LTR_Recv(); *dest – a pointer to the output array which may include
either ADC codes or voltage values in volts. It shall be defined by parameter volt. If volt=0 then the output
array shall contain ADC codes; if volt=1 then it shall contain values converted into voltage in volts.
Anyway this array shall be type double. In output array dest[] data is also arranged frame by frame, but
in case of successful completion of function the number of components shall be equal to the number of
collection points, i.e. twice as small as the number of components of the input array src[]. . Whereby in
the invocation of function LTR212_ProcessData() the parameter size should be set twice the number of
collection points, i.e. equal to the number of the input array components src[]. The function shall change
value of this parameter, and at the exit the parameter size shall be equal to half of initial value. As a rule,
acquisition process is cyclic (refer to Fig. 1.). Acquisition cycle should be arranged in a separate thread to
ensure its effective performance. The example of data acquisition and processing via function
LTR212_Recv() and LTR212_ProcessData().

For example, we wish to receive data from two collection points per each channel. Let the variable hltr212
be an instance of the module description structure type TLTR212. In this example we shall use the same
logic channel table as we used in Chapter 3.2, but the input signal range for each channel shall be set +/-
80 mV. Then Logical Channel Table shall be as follows:

 hltr212.LChTbl:

0x00010003

0x00020003

0x00040003

0x00050003

0x00070003

0x00080003

We have the following physical channels involved: 1, 2, 4, 5, 7 and 8. To receive data array from two
points of each channel after module configuration and acquisition start we shall use function
LTR212_Recv(). As the number of involved channels is equal to 6 and we wish to receive data from
collection points for each channel, then we shall receive information from 6*2=12 points. As referenced
above, parameter size shall contain double number of collection points, or size=12*2=24. Parameter
timeout is set equal to 0.5s=500ms. timeout= 500. src[]- the array whereto data words are recorded
from the module. After initialization, opening, configuration of module and acquisition start we shall apply
the function with parameters indicated above: LTR212_Recv(&hltr212, src, NULL, 24, 500). On return
form function, the array of "raw" data src[] shall be as follows, for example:

 src[]:

0x007F0800

0xFF220810
0x00840821
0x03790831
0x008C0843
0x0E560853
0x00820864
0x03010874
0x008A0886
0x05140896
0x 008E08A7
0x 0D1508B7
0x 007F08C0
0x FF2708D0
0x 008408E1
0x 035508F1
0x 008C0803
0x 0E5D0813
0x 00820824
0x 02DB0834
0x 008A0846
0x 05110856
0x 008E0867
0x D200877

Frame

As reflected by example, samples in frames are located cyclically in ascending order of physical channels.
This is the "raw data" received directly from crate controller. Number of physical channel is presented by
four least-significant bits in each data package. In this channel counter the numeration starts from null.
Each sample matches two array components. The first one contains the most-significant bite of received
sample, the second one - mean and the least-significant bites (refer to Annex 2 for more detailed
information about data package format). Then validate data, delete operating fields and, for our example,
convert voltage values of input signal. For this purpose call function LTR212_ProcessData(). Parameter
src[] – data array previously received by the function LTR212_Recv(). Parameter size is equal to the
number of its components, size=24. dest[] – output array, containing voltage values in volts for input
signals in our case. Parameter volt=1 as we wish to recompute ADC code data in the input signal voltage
value. Invocation of function LTR212_ProcessData() shall be as follows:
LTR212_ProcessData(&hltr212, src, dest, &size, 1), where size=24. The function, after validation,
deletion of operating fields and combination of all bites of each sample, acquired ADC code values and
converted these values to volts. Conversion to voltage values on the assumption that input signal range
for all channels is +/- 80 mV, as defined above in logic channel table. Output array dest[] after operation
of the function LTR212_ProcessData() shall be as follows: dest[]:

-2.117156982421875 E-6

2.508478164672852 E-3
7.534999847412110 E-3
1.257333755493164 E-3
6.262397766113282 E-3
8.781938552856446 E-3
-2.069473266701562 E-6
2.508134841918946 E-3
7.535066704614258 E-3
1.256971359252930 E-3
6.262369155883789 E-3
8.782043457031249 E-3

As reflected by this example, after operation of the function LTR212_ProcessData() output array
contains twice less components than the initial one. Parameter size is currently also equal to 12. Now this
data may be used, for example, for visualization. It should always be remembered that the frame, i.e. data
sequence in the output array corresponds to physical channel sequence specified in the logic channel table.
Number of channel corresponding to this component of the output array shall also be defined by the logic
channel table. It must be always used during software coding. Summarizing the above, we site a small
fragment of the program code demonstrating data acquisition from the module based on conditions of
concerned example.

 DWORD src[24];
 DWORD dest[12];
 DWORD size;
 TLTR212 hltr212;

/**
Data initialization, opening, configuration and acquisition start
………………………………………………………………………….
/**/
// Data acquisition:

Frame

// If required, cycle conditions
 size=24;
 LTR212_Recv(&hltr212, src, NULL, size, 500); LTR212_ProcessData(src,
dest, &size, 1);
 ………………………………….
 /**
 Acquisition cycle stop, data acquisition stop
 **/
 Except for abovementioned actions, the function validates data words path controlling special counters
(expedited word counter and channel counter) containing in each word. The function compares channel
sequence defined upon generation of logic channel table with sequence required directly from module. In
case of non-conformity the function shall suppress frame where the conformity was detected and it shall
be replaced with the next one in the output array dest[]. "Error" frame shall be deleted in whatever point
the required channel sequence has failed. Nonetheless the function returns the error despite that the
array is adjusted and in fact further operation is possible. The function traces state of sent data package
counter. In case of failure it continues further array processing, but it shall be executed with an error.
Irrespective of error in the counter of expedited data packages the channel counter shall be checked such
as it was described above, and error frames shall be deleted, if any. Refer to Annex 2 for more detailed
information about these counters. If "error" frames were detected then at the function exit the
parameter size shall be not equal to initial value, it shall be less than half of it, as error frames shall be
deleted from the output array dest[].

4.2 Data acquisition mode characteristics.
The module has three acquisition modes, two of which are four-channel and one is eight-channel.

In four-channel modes all four ADC AD7730, installed on the module board operate in a synchronous
manner and channels fail to switch. Acquisition is continuous. In eight-channel mode channels switch
in each ADC AD7730. In eight-channel mode the acquisition circuit shall be as follows: the first data
acquisition channel is activated in each of four ADC AD7730 installed on the module (physical channels
1, 2, 3, 4). All ADC get started in a synchronous manner for a single acquisition. Received readings are
accepted from registers of all ADC and are sent to the crate controller and PC. Then the second channel
is activated in each ADC (physical channels 5, 6, 7, 8) and the same actions occur. Afterwards the first
group of channels switch on again and the process repeats cyclically. In this mode upon filling of hardware
filters the data acquisition is executed on a frequency of set filtration mode (150.1 Hz), but data output
frequency in PC shall be significantly less (about 3.4 Hz), as ADC reprogramming, acquisition by another
channel group and data transfer to the crate controller and PC requires time upon channel switching. To
determine reading output frequency both in four- and eight-channel modes the function
LTR212_CalcFS() is used.

One should bare in mind that data output frequency in eight-channel mode is not accurate, as the
acquisition process is not synchronous! In particular, the frequency depends on number of involved
channels. In this regard 8-channel mode should not be used in applications requiring for frequency
accuracy and time intervals.

In four- and eight-channel high-accuracy modes the alternating reference voltage may be used. In this
case bridges are supplied with ac voltage with compensation of thermal electromotive force effect
occurring upon connection of measuring bridges to the module. The frequency of switching the supply
voltage of the bridges is equal to half the frequency of data acquisition. One should bear in mind that
alternating reference voltage is not applied in four-channel mean-accuracy mode.

5 Module calibration.

5.1 Calibration modes.

Each of 4х ADCs AD7730 installed on the module board has integrated calibration functions, special
calibration registers (offset and gain), and integrated digital-to-analog converter (DAC). These facilities
allow for internal and external calibration of the module channel.

From the software's point of view, calibration is a calibration factor determination and placing to special
area of the module PROM hereinafter referred to as the calibration area. If the user wishes to apply
calibration factors during acquisition they shall be downloaded from this area to calibration registers of
required ADC channels AD7730.

Internal calibration shall mean factory calibration factors input (submitted by LLC "L-Card") to the
calibration area of the module PROM. Factory calibration factors are stored in another area of PROM
which is used only for storage, and data stored there can not be rerecorded.

External calibration shall mean determination of calibration factors on the assumption of user-defined
measurement conditions and recording of these factors to the calibration area of PROM.

Null calibration means calculation (if required) and recording of calibration offset factors and integrated
DAC code to the calibration area of PROM.

When acquiring data using offset factors they shall be rerecorded from the calibration area of PROM to
calibration offset registers of required channels, and to the DAC register. It allows for adjustment of null
offset of the input signal. Range calibration means calculation (if required) and recording calibration
gain factors to the calibration area of PROM. When acquiring data using gain factors they shall be
rerecorded from the calibration area of PROM to calibration gain registers of required channels. It
enables to adjust conformance of actual full range of measured channel with the range specified for the
channel. Full-scale calibration is both the null calibration and the range calibration. Whereby required
calibration factors are input both in PROM cells conforming to offset factors and cells conforming to gain
factors.

Prior to calibration it is necessary that the acquisition mode is set where determinable calibration
factors shall be applied. I.e. the module description structure fields shall be filled prior to calibration.
Calibration shall be executed via invocation of the function LTR212_Calibrate(). Refer to Chapter 3.3
of the Manual for the function description.

In case of internal calibration this function reads factors out of the factory factors storage area to the
calibration area of the module PROM; in case of external calibration factors are calculated and recorded
to the calibration area of PROM. After calibration upon setting of the module description structure field
UseCalibration=1 and further invocation of function LTR212_SetADC() calibration factors shall be
read out of this PROM area and recorded to calibration registers of corresponding ADC channels
Parameter mode of the function LTR212_Calibrate() determines calibration mode. Upon execution of
internal calibration the user may not address any signal to the module inputs as in such case the calibration
process shall be just a rerecording of factors from one PROM area to another one. In case of external null
calibration null voltage shall be supplied to the module inputs. In case of external range calibration the
module channel inputs shall be fed with voltage equal to maximum positive voltage for this range. In case
of full-range external calibration start with null calibration, followed with the range calibration.
Description of the module calibration modes is provided below.

 Table 6

mode Mode Description

0 Internal null calibration
Records factory calibration offset factors to
corresponding cells of the PROM calibration areas.

1 Internal range calibration
Records factory calibration gain factors to corresponding
cells of the PROM calibration areas.

2
Full-scale internal
calibration

Records factory calibration offset and gain factors to
corresponding cells of calibration areas of the module
PROM.

3 External null calibration

Calculates calibration offset factors and records them to
corresponding cells of calibration areas of the module
PROM. During calibration the module inputs should be
fed with dc voltage conforming to the null signal

4 External range calibration

Calculates calibration gain factors and records them to
corresponding cells of calibration areas of the module
PROM. During calibration the module inputs should be
fed with dc voltage conforming to maximum positive
voltage of the input signal voltage range.

5
Internal range + external
null

Records factory calibration gain factors to corresponding
cells of calibration areas of the module PROM, then
calculates and records calibration offset factors to PROM.
During calibration the module inputs should be fed with
dc voltage conforming to the null signal.

6

External calibration range
(the second stage in case of
the full-scale external
calibration)

Applicable ONLY in case of full-scale external calibration
AFTER execution of external null calibration. During
calibration the module inputs should be fed with dc
voltage conforming to maximum positive voltage of the
signal.

7
External null calibration
with reservation of scaling
factors

Analogue of the "External null calibration", however,
upon execution, scaling factors previously determined
during the full-scale external calibration shall be saved.

Parameter reset of the function LTR212_Calibrate() allows for indication whether calibration registers
of ADC AD7730 should be cleared prior to calibration. For example, if null calibration is subject to
adjustment without modification to gain factors, then required channels shall be calibrated without

preclean of registers. To clear registers prior to calibration set the parameter reset=1. If not applicable
then reset=0.
Software also assumes possibility of automatic application of factory calibration factors. If the flag
UseFabricClb=1 is set for each invocation of function LTR212_SetADC() upon modification of channel
range the factory calibration factors, both offset and gain, corresponding to this range, shall be
automatically downloaded to PROM area.

Maximum offset voltage values which may be compensated via external calibration are specified in the
table below.

 Table 7

Compensated offset in ranges:

10mV,
19mV,
40mV,
80mV,

10mV
19mV
40mV
80mV

78.7mV *
78.7mV*
79.5mV*
81.5mV*

* If reference voltage 2.5 V is applied then specified values shall be twice as less.

5.2 Different calibration modes usage pattern.

 Calibration of the module LTR-212(M) has a number of features which should be considered during
coding:

- Factory calibration factors:
• for LTR212 and LTR212M-3 these factors are used ONLY at reference voltage 5.0 V.
AT reference voltage 2.5 V functions of internal calibration shall be executed with an error!!!
Upon operation at reference voltage 2.5 V apply external calibration.
• for LTR212M-1 and LTR212M-2 these factors are applied both at reference voltage 5.0
V and at 2.5 V.

- In case of internal calibration in four-channel mean accuracy mode ONLY factory gain factors
may be used. That means in this mode only internal range calibration may be executed. At attempt
of internal null calibration or full-scale internal calibration the function LTR212_Calibrate() shall
be executed with an error. External calibration may be used without limitation, just as "Internal
range calibration + external null calibration" mode.

- Software provides for the factory calibration factors direct application mode. It is switched on
via setting of the module description structure field UseFabricClb as one (UseFabricClb=1). If
this mode is switched on then factory calibration offset and gain factors shall be downloaded
directly from PROM factory calibration factor storage area to calibration registers of ADC
AD7730. Essential factors shall be selected automatically according to selected channels and
corresponding input signal ranges. Whereby PROM calibration area shall not be modified. This
mode enables automatic downloading of factory calibration factors upon switching to different
measurement ranges. It also enables factory calibration application without deletion of previously
set calibration factors placed in PROM calibration area. Thus, the user may easily switch from
his/her own calibration factors to the factory-set factors and vice versa. This mode is not applicable
in four-channel mean-accuracy mode. This mode is also not applicable for LTR212 andLTR212M-
3 at reference voltage 2.5 V. As for LTR212M-1 and LTR212M-2 this mode is applicable at both
reference voltage values: 2.5 V and 5.0 V.

The Table clarifies the above-said for LTR212 and LTR212M-3.
 Table 8

Internal calibration
mode

Internal
range

calibration

Internal
range

calibration

Full-scale
internal

calibration

Internal range
calibration +
external null
calibration

Factory
calibration factor

direct
application

mode

Four-channel
mean-accuracy mode - + - + -

Four-channel
high-accuracy mode + + + + +

Eight-channel
high-accuracy mode + + + + +

Any mode at
reference voltage 2.5
V

- - - - -

 It should be noted again that external calibration may be used without any limitation.
- In case of full-scale external calibration first of all perform external null calibration (invocation of

function LTR212_Calibrate() with parameter mode=3), then perform external range calibration
but as the second stage of the full-scale external calibration (invocation of function
LTR212_Calibrate() with parameter mode=6. But not mode=4!!!).

Attention!!! Be careful when switching on signals during calibration! If any channel subject to calibration
is "up in the air" or its signal is outside of the input signal voltage range, then calibration shall be executed
with an error. In case of calibration function failure always analyze logic channel mask value. If it has
changed then values for integrated DAC failed to match. It may indicate whether at the out-of-range signal
address compensated via DAC, or at input signals "up in the air".

6 Digital filtration.

6.1 Digital filters used in the module LTR212.
All data acquired by the module as subject to digital filtration. Each of ADC AD7730, installed on the
module board has two integrated hardware digital filters: first stage filter and second stage filter. First
stage filter is a low-pass filter type sinc3 designed for elimination of quantisation noise occurred in
modulator. Second stage filter is a digital feedback filter with 22 taps that process signal at the first stage
filter outlet.

First stage hardware digital filter is involved in all three operating modes of the module LTR212.
Second stage hardware digital filter is applicable only in 4-channel high-accuracy and 8-channel
high-accuracy modes. In 4-channel mean-accuracy mode this filter shall be SWITCHED OFF!

However this mode enables application of software digital filters developed by "L-CARD". Refer to
AD7730 Data Sheet (www.analog.com/en/prod/0,2877,AD7730,00.html) for more detailed
information about hardware 1 and 2 stage filters. More detailed information about software digital filters
shall be provided in next chapter.

AFC of the module operation using software and hardware filters is specified in the document "Crate
system LTR. User manual", Annex A.2.2.1.

Recall that if the software feedback filter is switched on prior to acquisition of the first filtration reading
the module DSP memory buffer, equal to the filter order, shall be filled with samples. For example, if the
filter order is 225, then after ADC start the filter buffer shall be filled at first (225 words for each channel,
and only then the module shall generate data.

If the software infinite-impulse response filter is ON, then initial 30 readings of each channel shall be
used to fill in delay line and to provide filter stabilization. The module shall not address this data to the
crate controller and PC.

6.2 Software filters application
"L-CARD" has developed a set of software digital filters realized at the module DSP level. They allow
for digital data filtration at the maximum acquisition frequency (7680 Hz) which may not be performed
using integrated hardware 2 stage filters. It should be bared in mind that ADC operates in 16-bit mode in
this software version if software filters are switched on! However 16-bit data is addressed to the crate
controller in two packages as 24-bit data. Due to this fact the function LTR212_ProcessData() is applied
as well as in other operating modes. The software filter set includes 2 stage infinite-impulse response filter
aligning initial AFC in specified frequency bandwidth with an accuracy of 0.02dB and 5 feedback filters
of different order with various frequency values of initial delay line. Existing software filters shall operate
only in 4-channel mean-accuracy mode at the acquisition frequency 7680 Hz. Filter factors are stored
in files that are read out by the function LTR212_SetADC() and then are addressed to the module DSP.
Full names of files with software filter factors shall be previously indicated in the module description
structure components filter.IIR_Name and filter.FIR_Name. The rest fields of the substructure filter
shall be automatically filled with values read out of the file.

The infinite-impulse response filter file contains only factors. As for the feedback filter the initial file lines
shall contain data of the filter order and decimation factor in the following format:
 FS=XXXX HZ
 DECIMATION= XX

http://www.analog.com/en/prod/0,2877,AD7730,00.html
http://www.analog.com/en/prod/0,2877,AD7730,00.html
http://www.analog.com/en/prod/0,2877,AD7730,00.html

For example,
 FS= 7680 HZ
 DECIMATION= 24
 0001
 0001
 ……………………. Factors
…………………….

 Attention! The feedback filter order shall not exceed 255!

The function LTR212_SetADC() "understands" only this format of the feedback filter file. The user may
individually calculate digital filter and record its factors to the file. The function LTR212_SetADC() shall
read the factors and download them to the internal memory of the module DSP. The filter may be
developed, for example, in the QED environment. Received factors should be multiplied by 32768 and
the result shall be rounded to integral two-bite value. Then the text file of the abovementioned format shall
be generated whereto the factors should be put in. In this particular kind they may be applied by the
software digital filters.

7 PROM check.

 User interface library contains useful data integrity check function in the module PROM
LTR212_TestEEPROM(). If the function is not failed that shall mean that data checksum in the module
PROM is correct. If the function returns value "–2031" (Incorrect PROM data checksum) then PROM
data is damaged. In spite of the fact, the module operation may be continued. However consider that data
in some PROM cells may be incorrect. This function may be applicable, for example, each time as the
module is opened (after execution of the function LTR212_Open()) to control integrity of calibration
factors and identification record.

Annex 1. Examples of code writing.

P1.1 Configuration examples.
Prior to set configuration it is necessary to initialize and open interface channel for communication with
the module. It is done by calling the following functions: LTR212_Init() and LTR212_Open(). Then
you must fill in the fields of the module description structure with the required values. The following are
examples of setting the module configuration (defining the fields of the module description structure):

1. Four-channel mean-accuracy mode, acquisition frequency 7600 Hz, software filters are ON. The

feedback filter with the initial frequency of delay line 345 Hz is selected. All 4 channels are involved.
Input signal voltage range for all channels is 80 mV. Calibration factors are applied. Constant
reference voltage 5 V.

TLTR212 conf_1; // Declare structure type TLTR212
...

conf_1.AcqMode=0; // 4-channel mean-accuracy mode
conf_1.UseClb=1; // Apply calibration factors
conf_1.UseFabricClb=0; // Do not apply factory calibration factors
conf_1.LChQnt=4; // Quantity of logic channels is equal to 4

// Fill the Logical Channel Table in. For each channel set // input signal range 80
mV.

for(i=0; i< conf_1.LChQnt; i++)

conf_1.LChTbl[i]=LTR212_CreateLChannel(i,3);
// Set the parameters of software filters
conf_1.filter.IIR=1; // Infinite-impulse response filter ON
conf_1.filter.FIR=1; // Feedback filter ON
conf_1.filter.IIRName=”C://Filter// D212_IIR.flt”; // Filter files
conf_1.filter.FIRName=”C://Filter// D212_345.flt”;
// Set reference voltage polarity and value
conf_2.AC=0; // DC reference voltage
conf_1.REF=1; // Reference voltage 5 V.

2. 4-channel high-accuracy mode, acquisition frequency 150.1 Hz, software filters OFF. Hardware

filters in ADC AD7730 ON. 2 logic channels corresponding to physical channels 1 and 4 are
involved. Ranges 10mV and +40mV correspondingly. Calibration factors are applied. Constant
reference voltage 2.5 V.

TLTR212 conf_2; // Declare structure type TLTR212
...

conf_2.AcqMode=1; // 4-channel high-accuracy mode
conf_2.UseClb=1; // Apply calibration factors
conf_1.UseFabricClb=0; // Do not apply factory calibration factors

conf_2.LChQnt=2; // Quantity of logic channels is equal to 2

// Fill the Logic channel table in.
conf_2.LChTbl[0]=LTR212_CreateLChannel(1,0); // physical channel 1, range 10mV
conf_2.LChTbl[1]=LTR212_CreateLChannel(4,6); // physical channel 4, range +40mV
// Set the parameters of software filters
conf_2.filter.IIR=0; // Infinite-impulse response filter OFF
conf_2.filter.FIR=0; // Feedback filter OFF

// Reference voltage
conf_2.AC=0; // DC reference voltage
conf_2.REF=0; // Reference voltage 2,5 V.

3. 4-channel high-accuracy mode, acquisition frequency 150.1 Hz, software filters OFF. 3 logic

channels corresponding to physical channels 1, 3, and 4 are involved. Channel range 10 mV, +20 mV
and +80 mV correspondingly. Factory calibration factors are applied. Alternating reference voltage 5
V.

TLTR212 conf_3; // Declare structure type TLTR212

conf_3.Mode=1; // 4-channel high-accuracy mode
conf_3.UseClb=0; // Do not apply calibration factors
conf_3.UseFabricClb=1; // Apply factory calibration factors
conf_3.LChQnt=3; // Quantity of logic channels is equal to 3

// Fill the Logic channel table in.
conf_3.LChTbl[0]=LTR212_CreateLChannel(1,0); // physical channel 1, range 10mV
conf_3.LChTbl[1]=LTR212_CreateLChannel(3,5); // physical channel 3, range +20mV
conf_3.LChTbl[2]=LTR212_CreateLChannel(4,7); // physical channel 4, range +80mV
// Set the parameters of software filters
conf_3.filter.IIR=0; // Infinite-impulse response filter OFF
conf_3.filter.FIR=0; // Feedback filter OFF

// Reference voltage
conf_3.AC=1; // Alternating reference voltage
conf_3.codec.REF=1; // Reference voltage 5 V.

4. 8-channel high-accuracy mode, approximate acquisition frequency 3.4 Hz, software filters OFF.

Interruption mode OFF. 6 logic channels corresponding to physical channels: 1, 2, 3, 4, 5, 8 are
involved. Range for all channels 20 mV. Calibration factors are applied. Constant reference voltage 5
V.

TLTR212 conf_4; // Declare instance of the module description structure

conf_4.size=Sizeof(PTLTR212); // Structure size
conf_4.Mode=1; // 8-channel high-accuracy mode

conf_4.UseClb=1; // Apply calibration factors
conf_4.UseFabricClb=0; // Do not apply factory calibration factors
conf_4.LChQnt=6; // Quantity of virtual channels is equal to 6

// Fill the Logic channel table in.
conf_4.LChTbl[0]=LTR212_CreateLChannel(1,1); // physical channel 1, range 20mV
conf_4.LChTbl[1]=LTR212_CreateLChannel(2,1); // physical channel 2, range 20mV
conf_4.LChTbl[2]=LTR212_CreateLChannel(3,1); // physical channel 3, range 20mV
conf_4.LChTbl[3]=LTR212_CreateLChannel(4,1); // physical channel 4, range 20mV
conf_4.LChTbl[4]=LTR212_CreateLChannel(5,1); // physical channel 5, range 20mV
conf_4.LChTbl[5]=LTR212_CreateLChannel(8,1); // physical channel 8, range 20mV
// Set the parameters of software filters

 conf_4.filter.IIR=0; // Infinite-impulse response filter OFF
 conf_4.filter.FIR=0;

// Reference voltage

// Feedback filter OFF

 conf_4.codec.AC=0; // DC reference voltage

conf_4.codec.REF=1; // Reference voltage 5 V.

P1.2. An example of an application.
Simple console application written in the Microsoft Visual C++ 2005 environment.

#pragma hdrstop

#include "ltr\\include\\ltr212api.h"
/* other header files */
#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
#include <conio.h>

#define ACQ_BLOCKS_QNT (2)
#define TOTAL_BLOCKS_QNT (10)
#define POINTS_PER_CHANNEL (256)
#define CHANNELS_QNT (4)

TLTR212 hltr212; // The instance of the module description structure
HANDLE AcqThreadHnd; // Acquisition thread
CHAR ErrorString[255]; // The string for outputting the error description
CHAR MsgString[255]; // The line for outputting messages to the console

double voltage[ACQ_BLOCKS_QNT][CHANNELS_QNT*POINTS_PER_CHANNEL]; static
volatile int RunFlag = 0; // Acquisition run flag static volatile int
BlockReady[ACQ_BLOCKS_QNT];

static DWORD WINAPI AcqThread (LPVOID param);

static DWORD WINAPI AcquireThread(LPVOID param)

{ int i; int
err=0; INT
DataCntr=0;
 DWORD data[2*POINTS_PER_CHANNEL*CHANNELS_QNT];
 DWORD to; // Timeout
INT AcqBlockCntr=0;
int BlockCntr=0;
 DWORD size; // Data portion size
 DWORD ExitCode;

 /* The function started as a data acquisition thread. */
for(i=0;i<ACQ_BLOCKS_QNT;i++)
 BlockReady[i]=0;

err=LTR212_Start(&hltr212);
if(err) {
 strcpy(ErrorString, (char *) LTR212_GetErrorString(err));
 CharToOem(ErrorString,ErrorString);
 printf("%s",ErrorString);
 LTR212_Stop(&hltr212);

RunFlag=0;

}
 size=2*POINTS_PER_CHANNEL*CHANNELS_QNT; // Data portion size
to=LTR212_CalcTimeOut(&hltr212, POINTS_PER_CHANNEL);
 while(RunFlag) // while acquisition run
flag...
 {
 size=2*POINTS_PER_CHANNEL*CHANNELS_QNT;

 DataCntr=LTR212_Recv(&hltr212, data, NULL, size, to);
if(DataCntr!=size)
 {
 RunFlag=0;
 if(DataCntr>=0)
 {
 sprintf(MsgString,"%s", "Error! Quantity of received samples is less
than requested one!\n");
 CharToOem(MsgString,MsgString);
 printf("%s\n",MsgString);
 }
 else
{
 err=DataCntr;
 strcpy(ErrorString, (char *) LTR212_GetErrorString(err));
 CharToOem(ErrorString,ErrorString);
printf("%s",ErrorString);
 }
break;
 } // к if(DataCntr!=size)

 err=LTR212_ProcessData(&hltr212, data, voltage[BlockCntr], &size,
1); if(err) {
 strcpy(ErrorString, (char *) LTR212_GetErrorString(err));
 CharToOem(ErrorString,ErrorString);
printf("%s",ErrorString);

 RunFlag=0;
break;
 }

 AcqBlockCntr++;
 sprintf(MsgString,"%-th data portion received",
AcqBlockCntr);
 CharToOem(MsgString,MsgString);
printf("%s\n",MsgString);

 /* Block interleaving is used for synchronization of file record in the
main thread */

 BlockReady[BlockCntr]=1;
 BlockCntr++;

if(BlockCntr>=ACQ_BLOCKS_QNT)
 BlockCntr=0;

 } // to while(RunFlag)

 RunFlag=0;
 err=LTR212_Stop(&hltr212);
 if(err)
{
 strcpy(ErrorString, (char *) LTR212_GetErrorString(err));
 CharToOem(ErrorString,ErrorString);
 printf("%s",ErrorString);
 }

 ExitThread(0);
return 0;
}
void main()
{

DWORD AcqThreadId;
DWORD ThreadSatus;

INT TotalBlockCntr; // Counter of blocks recorded to the file
INT err; // Variable for error code storage
INT i; // applied for ineraction counters in cycles DWORD
data[2*5000]; /* array whereto module data is recorded*/ FILE
*DataFile;
const char FileName[] = "ltr212_data.bin";
 int
BlockCntr=0;
int
BlockNumber;

/* We initialize the communication channel for the module. Fields of the
module description structure are filled with default values. */

sprintf(MsgString,"%s", "Initialization of the module description
structure\n");

CharToOem(MsgString,MsgString);
printf("%s\n",MsgString);

 err=LTR212_Init(&hltr212); if(err) {
 strcpy(ErrorString, (char *) LTR212_GetErrorString(err));
 CharToOem(ErrorString,ErrorString);
 printf("%s",ErrorString);
 LTR212_Close(&hltr212);
 Sleep(3000);
 return;

}
// Open the communication channel with the module. Network address and port
number by default
// Serial number of the first detected crate;
// Slot number - 0;
 err=LTR212_Open(&hltr212, SADDR_DEFAULT, SPORT_DEFAULT, "",
CC_MODULE1,
"ltr212.bio")
; if(err)
{
 if(err==LTR_WARNING_MODULE_IN_USE)
 {
 strcpy(ErrorString, (char *) LTR212_GetErrorString(err));
 CharToOem(ErrorString,ErrorString);
printf("%s",ErrorString);

 }
 else
 {
 strcpy(ErrorString, (char *) LTR212_GetErrorString(err));
 CharToOem(ErrorString,ErrorString);
printf("%s",ErrorString);
 Sleep(3000);
 return;
 }

}
/* Fill in the fields for information. Here is done only for demonstration
*/
sprintf(MsgString,"Module name: %s", hltr212.ModuleInfo.Name);
CharToOem(MsgString,MsgString);
printf("%s\n",MsgString);

sprintf(MsgString,"BIOS version: %s", hltr212.ModuleInfo.BiosVersion);
CharToOem(MsgString,MsgString);
printf("%s\n",MsgString);

sprintf(MsgString,"BIOS date of issue: %s", hltr212.ModuleInfo.BiosDate);
CharToOem(MsgString,MsgString);
printf("%s\n",MsgString);

sprintf(MsgString,"Module serial number: %s", hltr212.ModuleInfo.Serial);
CharToOem(MsgString,MsgString);
printf("%s\n",MsgString);

// Fill the fields of the module description structure with the required
values

hltr212.size=sizeof(TLTR212); // Structure size
hltr212.AcqMode=1; // 4-channel high-accuracy mode
hltr212.UseClb=0; // Do not apply user-defined calibration factors
hltr212.UseFabricClb=1; // Apply factory calibration factors.
hltr212.LChQnt=4; // Quantity of logic channels is equal to 4
 hltr212.REF=1; // Reference voltage 5 V.
hltr212.AC=0; // DC reference voltage

for(i=0; i<hltr212.LChQnt; i++)
 hltr212.LChTbl[i]=LTR212_CreateLChannel(i+1,3);

// Address ADC parameters to the module control program
 err=LTR212_SetADC(&hltr212); if(err) if(err) {
 strcpy(ErrorString, (char *) LTR212_GetErrorString(err));
 CharToOem(ErrorString,ErrorString);
 printf("%s",ErrorString);
 LTR212_Close;
 Sleep(3000);
 return;
 }

DataFile = fopen(FileName, "wb");

 if(DataFile==NULL)
 {
 strcpy(MsgString,"Could not create file!");
 CharToOem(MsgString,MsgString);
printf("%s\n",MsgString);
 LTR212_Close(&hltr212);
 Sleep(3000);
return;
 }
 RunFlag = 1;

// Create acquisition thread
AcqThreadHnd=CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)AcquireThread,
NULL, CREATE_SUSPENDED, (LPDWORD) &AcqThreadId);

if(AcqThreadHnd==NULL)
{
 strcpy(MsgString,"Could not create acquisition thread!");
 CharToOem(MsgString,MsgString);
printf("%s\n",MsgString);
 LTR212_Close(&hltr212);
 Sleep(3000);
return;
}

// Resume thread
ResumeThread(AcqThreadHnd);

 strcpy(MsgString,"Acquisition thread is resumed!\n");

 CharToOem(MsgString,MsgString);
printf("%s\n",MsgString);

TotalBlockCntr = 0;

while(RunFlag)
{
 if(BlockReady[BlockCntr]) // If regular block is read
 {
 fwrite(voltage[BlockCntr], sizeof voltage[0][0],
 CHANNELS_QNT*POINTS_PER_CHANNEL, DataFile);

 TotalBlockCntr++; // Block counter
 sprintf(MsgString,"%d-я %s\n",TotalBlockCntr, "data portion recorded
to the file");
 CharToOem(MsgString,MsgString);
printf("%s\n",MsgString);

 BlockReady[BlockCntr]=0;
 BlockCntr++;

 if(BlockCntr>=2)
 BlockCntr=0;
 if (TotalBlockCntr >= TOTAL_BLOCKS_QNT)
 {
 strcpy(MsgString,">> Acquisition is successfully executed.\n");
 CharToOem(MsgString,MsgString);
printf("%s\n",MsgString); RunFlag = 0;
 }
 } // to if(BlockReady[BlockCntr]...)
 } // to while(RunFlag)

//Monitor thread stop
 WaitForSingleObject(AcqThreadHnd, INFINITE);
 GetExitCodeThread(AcqThreadHnd, &ThreadSatus);

 CloseHandle(AcqThreadHnd);

 strcpy(MsgString,"Acquisition thread deleted.\n");
 CharToOem(MsgString,MsgString);
printf("%s\n",MsgString);

 fclose(DataFile);
 strcpy(MsgString,"Data record file closed.\n");
 CharToOem(MsgString,MsgString);
printf("%s\n",MsgString);

 strcpy(MsgString,">> Press any key for exit\n");
 CharToOem(MsgString,MsgString);
printf("%s\n",MsgString);
while(!kbhit())
 continue;
 return;
}

Annex 2. Protocol of data exchange with the module.

 The data exchange protocol with the module is based on the use of the format of 4-byte instruction
packets or data. This format is described in details in the book "LTR Crate System. User manual". Ch.
4.3. Here we turn our attention to information with a meaning applicable to the module LTR212.
 All commands from the crate controller to the module and the acknowledgment of these commands are
4-byte command words. The data collected by the module ADC and transmitted from the module to the
crate controller are 4-byte data words. It should be noted that this protocol is common for all modules of
this crate system.

 The command word format applicable to the module LTR212 is as follows:

 Bits 16-31 Bits 8-15 Bits 0-7

- The command code is a number that specifies the BIOS procedure to be performed by the processor

of the module.
- Service information - is an information about the slot number, tag-bit of the command word, time

tag, second tag. This byte carries the level information of the crate controller. In addition to the
command tag-bit or data bit, these bits are not transmitted to and from the module.

- The command context is the values passed along with the command and used by the processor when
executing it. For example, calibration parameters, ADC register content during programming, etc.

 The commands in the described format are also transmitted in the opposite direction: from module to
crate controller. In this case, they represent either confirmations of the execution of commands, or contain
in the context fields the values that were required from the module when programming it (but not when
collecting data!!!). For example, content of the read out ADC register AD7730.
 Data words are used in this module only to transfer data from the module to the crate controller and the
PC during data collection. When programming the module, data words are not used.

 The format of the data word is as follows:

 Bits 16-31 Bits 8-15 Bits 4-7 Bits 0-3

- Data - ADC codes transferred from the module to the crate controller and PC.
- Service information - is an information about the slot number, tag-bit of the command word, time

tag, second tag. This byte carries the level information of the crate controller. In addition to the
command tag-bit or data bit, these bits are not transmitted to and from the module.

- Data package counter – 4-bit counter for data packages transmitted by the module to crate-
controller. Whenever each new package is sent, the processor increments the value of this counter,
which is then be used to verify the consistency of the packages from the module.

- Channel counter – this field shall be filled in by the processor with the physical channel number
whereof the addressed data was acquired, for each data package. Applicable for verification of
packages consistency from the module. Channel numeration starts from null.

 Command context Service information

 Command code

Data Service
information

Counter of
data packages

 Counter of
channels

http://en.lcard.ru/download/ltr.pdf
http://www.lcard.ru/download/ltr.pdf
http://www.lcard.ru/download/ltr.pdf

	1 Module LTR-212 essentials.
	1.1 What's the news?
	1.1.1 2013

	2 General information of Library LR212API.
	2.1 Module description structure.
	2.2 User-defined library functions.
	2.2.1 Classification of library functions.
	2.2.2 A typical sequence of program writing.

	3 Detailed description of Library LTR212API.
	3.1 Module description structure.
	3.1.1 Module identification information
	3.1.2 User-specific calibration data storage structure

	3.2 Logical Channel Table
	3.3 Description of the Ltr212api library function.

	4 Data acquisition process characteristics.
	4.1 Data acquisition cycle formation
	4.2 Data acquisition mode characteristics.

	5 Module calibration.
	5.1 Calibration modes.
	5.2 Different calibration modes usage pattern.

	6 Digital filtration.
	6.1 Digital filters used in the module LTR212.
	6.2 Software filters application

	7 PROM check.
	Annex 1. Examples of code writing.
	P1.1 Configuration examples.
	P1.2. An example of an application.

	Annex 2. Protocol of data exchange with the module.

