Библиотека разбора данных TEDS

LTEDSAPI

Руководство программиста

Автор руководства:

Борисов Алексей

ООО "Л Кард"

117105, г. Москва, Варшавское ш., д. 5, корп. 4, стр. 2

тел.: +7 (495) 785-95-25 факс: +7 (495) 785-95-14

Адреса в Интернет:

http://www.lcard.ru

E-Mail:

Отдел продаж: sale@lcard.ru

Техническая поддержка: support@lcard.ru

Отдел кадров: job@lcard.ru

Таблица 1: Ревизии текущего документа

Ревизия	Дата	Описание
1.0.0	17.01.2019	Первая ревизия данного документа

Оглавление

1	Оч	ем это	от докум	мент	7
2	Уст	ановка	а и подн	ключение библиотеки к проекту	8
3	Оби			работе с библиотекой	9
	3.1			юблиотеки ltedsapi	8
	3.2			ия о формате данных TEDS	9
	3.3			реализации библиотеки ltedsapi и ее ограничения	11
	3.4	Станд	цартная і	последовательность вызовов	11
4	Кон	істант	ы, типы	і данных и функции библиотеки	13
	4.1	Общи	е опреде	ления и типы	13
		4.1.1	Конста	нты и макроопределения	13
		4.1.2	Коды о	шибок	13
		4.1.3	_	флагов, определяющих свойства данных TEDS	14
		4.1.4	Коды с	електоров TEDS	15
		4.1.5	_	расширения завершающего селектора	16
		4.1.6		ртные идентификаторы шаблонов	16
		4.1.7	Базовая	я информация TEDS	18
		4.1.8		мация о дате	18
	4.2		- 10 € 10 € 10 € 10 € 10 € 10 € 10 € 10	x TEDS	19
		4.2.1	Типы д	анных для декодирования TEDS	19
			4.2.1.1	Контекст разбора данных TEDS	19
		4.2.2		ии декодирования TEDS	20
			4.2.2.1	Инициализация контекста разбора данных TEDS	20
			4.2.2.2	Извлечение базовой информации из данных TEDS	20
			4.2.2.3	Извлечение селектора из данных TEDS	21
			4.2.2.4	Извлечение расширения завершающего селектора из дан-	
				ных TEDS	21
			4.2.2.5	Извлечение идентификатора стандартного шаблона из	
				данных TEDS	22
			4.2.2.6	Извлечение идентификатора шаблона производителя из	
				данных TEDS	22
			4.2.2.7	Извлечение идентификатора производителя из TEDS	
				данных	23
			4.2.2.8	Проверка, является ли значение даты действительным	~ ~
		4.0.0		значением	23
		4.2.3	•	ровневые функции декодирования базовых типов	24
			4.2.3.1	Извлечение заданного количества бит из данных TEDS	24
			4.2.3.2	Извлечение информации о дате из данных TEDS	24

		4.2.3.3	Извлечение целого числа из данных TEDS	25
		4.2.3.4	Извлечение 5-битных символов из данных TEDS	25
		4.2.3.5	Извлечение 7-битных ASCII символов из данных TEDS	26
		4.2.3.6	Извлечение вещественного числа с плавающей точкой из	26
		4007	данных TEDS.	26
		4.2.3.7	Извлечение вещественного числа с постоянным разреше-	25
		4 2 2 2	нием из данных TEDS	27
		4.2.3.8	Извлечение вещественного числа с относительным разре-	0.5
		4 2 2 2	шением из данных TEDS.	27
		4.2.3.9	Извлечение значения перечисления из данных TEDS	28
		4.2.3.10	Извлечение кода, определяющего вариант ветвления, из данных TEDS	28
		4.2.3.11	Извлечение размера массива из данных TEDS	28
		4.2.3.12	Проверка контрольной суммы блока данных TEDS	29
4.3	Кодиј	рование д	анных TEDS	29
	4.3.1	Типы дл	пя кодирования данных TEDS	29
		4.3.1.1	Контекст кодирования данных TEDS	29
	4.3.2	Функци	и кодирования данных TEDS	30
		4.3.2.1	Инициализация контекста кодирования данных TEDS	30
		4.3.2.2	Запись базовой информации в данные TEDS	30
		4.3.2.3	Запись селектора в данные TEDS	31
		4.3.2.4	Запись расширения завершающего селектора в TEDS	
			данные	31
		4.3.2.5	Запись идентификатора стандартного шаблона в данные TEDS	31
		4.3.2.6	Запись идентификатора шаблона производителя в данные TEDS	32
		4.3.2.7	Запись идентификатора производителя в данные TEDS.	32
	4.3.3		овневые функции кодирования базовых типов	33
	1.0.0	4.3.3.1	Запись заданного количества бит в данные TEDS	33
		4.3.3.2	Запись информации о дате в данные TEDS	33
		4.3.3.3	Запись целого числа в данные TEDS	34
		4.3.3.4	Запись строки из 5-битных символов в данные TEDS	34
		4.3.3.5	Запись строки из ASCII-символов в данные TEDS	35
		4.3.3.6	Запись вещественного числа с плавающей точкой в дан-	0.0
			ные TEDS	35
		4.3.3.7	Запись вещественного числа с постоянным разрешением	
			в данные TEDS	36
		4.3.3.8	Запись вещественного числа с относительным разрешени-	
			ем в данные TEDS	36
		4.3.3.9	Запись значения перечисления в данные TEDS	37
		4.3.3.10	Запись кода, определяющего вариант ветвления, в данные TEDS	37
		4.3.3.11		37
4.4	Станл		паблоны	38
	4.4.1		анных для представления общей информации	38
	_, _, _	4.4.1.1	Измеряемая физическая величина.	38
		4.4.1.2	Тип электрического интерфейса преобразователя	40

	4.4.1.3	Знак (полярность) выходного сигнала относительно вход-	
		ного	40
	4.4.1.4	Ось измерения датчика	40
	4.4.1.5	Метод отображения величин физического сигнала (PV)	4-1
		на значения электрического сигнала (EV)	41
	4.4.1.6	Тип напряжения питания или возбуждения	41
	4.4.1.7	Базовая информация о выполнении калибровки	41
	4.4.1.8	Информация о диапазоне физических величин, измеряемых датчиком	42
	4.4.1.9	Информация о диапазоне электрических значений на выходе датчика	42
	4.4.1.10	Информация о уровнях напряжении возбуждения или пи-	42
	4.4.1.10		43
4.4.9	III-6	тания датчика	
4.4.2		Accelerometer/Force transducer (25)	43
	4.4.2.1	Тип преобразователя для шаблона акселерометра/датчика силы	43
	4.4.2.2	Настройки чувствительности по умолчанию	43
	4.4.2.3	Параметры одного варианта чувствительности акселеро-	10
	4.4.2.0	метра/датчика силы	43
	4.4.2.4	Параметры чувствительности акселерометра/датчика си-	40
	4.4.2.4		4.4
	4.405	лы при программном управлении	44
	4.4.2.5	Параметры измерения физической величины, специфич-	
		ные для датчика силы	44
	4.4.2.6	Параметры измерения физической величины акселеро-	
		метром/датчиком силы	45
	4.4.2.7	Параметры электрического интерфейса акселеромет-	
		ра/датчика силы	45
	4.4.2.8	Параметры передаточной функции акселеромет-	
		ра/датчика силы	46
	4.4.2.9	Информация о калибровке акселерометра/датчика силы	46
	4.4.2.10	Информация о акселерометре/датчике силы	47
	4.4.2.11	Извлечение информации о акселерометре/датчике силы	
		из данных TEDS	47
	4.4.2.12	Запись информации о акселерометре/датчике силы в дан-	
		ные TEDS	47
4.4.3	Шаблон	High Level Voltage (30)	48
	4.4.3.1	Способ кодирования диапазона электрической величины	
		датчика с выходом по напряжению	48
	4.4.3.2	Информация об электрических характеристиках выход-	
		ного интерфейса датчика с выходом по напряжению	48
	4.4.3.3	Информация о питании датчика с выходом по напряжению	49
	4.4.3.4	Информация о датчике с выходом по напряжению	49
	4.4.3.5	Извлечение информации о датчике с выходом по напря-	
	4 4 2 2	жению из данных TEDS	50
	4.4.3.6	Запись информации о датчике с выходом по напряжению	
		в данные TEDS	50
4.4.4		Bridge Sensors (33)	50
	4.4.4.1	Тип моста	50

		4.4.4.2	Способ кодирования диапазона электрической величины
			для шаблона мостового датчика
		4.4.4.3	Информация о электрических характеристиках выходно-
			го интерфейса датчика с выходом в виде моста
		4.4.4.4	Информация шаблона мостового датчика
		4.4.4.5	Извлечение информации о мостовом датчике из TEDS
			данных
		4.4.4.6	Запись информации о мостовом датчике в данные TEDS.
	4.4.5	Шаблон	Galibration Table (40)
		4.4.5.1	Константы и макроопределения
		4.4.5.2	Домен параметра для задания точек калибровки
		4.4.5.3	Точка из таблицы калибровки
		4.4.5.4	Информация шаблона таблицы калибровки
		4.4.5.5	Извлечение калибровочной таблицы из данных TEDS
		4.4.5.6	Запись информации о мостовом датчике в данные TEDS.
4.5	Данні		водителя Л Кард
	4.5.1	Типы и	определения, специфичные для производителя "Л Кард" .
		4.5.1.1	Константы и макроопределения
		4.5.1.2	Идентификаторы моделей преобразователей компании "Л
			Кард" в TEDS
		4.5.1.3	Идентификаторы шаблонов производителя "Л Кард"
		4.5.1.4	Проверка, относится ли данный идентификатор произво-
			дителя к компании "Л Кард".
	4.5.2	Шаблон	Gurrent Impendance Table (1)
		4.5.2.1	Константы и макроопределения
		4.5.2.2	Соответствие сопротивления току
		4.5.2.3	Информация зависимости выходного сопротивления дат-
			чика от тока питания датчика
		4.5.2.4	Извлечение таблицы соответствия сопротивления току из
			данных TEDS
		4.5.2.5	Запись таблицы соответствия сопротивления току в дан-
			ные TEDS
	4.5.3		Phase Frequency Table (2)
		4.5.3.1	Константы и макроопределения
		4.5.3.2	Соответствие смещения фазы частоте
		4.5.3.3	Информация о фазо частотной характеристике преобра-
			зователя
		4.5.3.4	Извлечение таблицы с фазо частотной характеристикой
			из данных TEDS
		4.5.3.5	Запись таблицы с фазо частотной характеристикой в дан-
			HLIQ TEDS

О чем этот документ

Данный документ предназначен в первую очередь для программистов, которые собираются писать свои программы для разбора данных TEDS, содержащих информацию о преобразователе, с использованием предоставляемой фирмой "Л Кард" библиотеки ltedsapi.

В данном документе рассматривается вопрос подключения библиотеки к проекту пользователя, дается подробное описание интерфейсных функций, предоставляемых библиотекой, и используемых типов, а также дается описание основных подходов к использованию этих функций.

Сама библиотека написана на языке C и все объявления функций и типов приводятся на языке C. Однако все привязки к другим языкам программирования являются лишь обертками над библиотекой C и все функции, типы и параметры сохраняют свои значения и для других языков программирования. Поэтому этот документ полезен и пользователям, пишущим на других языках программирования.

Установка и подключение библиотеки к проекту

Использование библиотек для работы с крейтовой системой LTR описано в документе "Начиная работать с крейтовой системой LTR. Вопросы по программному обеспечению.".

Общий подход к работе с библиотекой

3.1 Назначение библиотеки ltedsapi

Данная библиотека предоставляет функции декодирования данных TEDS, содержащих информацию о преобразователе и его характеристиках в соответствии со стандартом IEEE 1451.4. Функции сохраняют извлеченную информацию в явно определенные структуры для дальнейшего использования.

Под преобразователем (transducer) в стандарте может подразумеваться как датчик (sensor), выполняющих преобразование интересующего воздействие (физической величины) в электрический сигнал, так и воздействующее устройство (actuator), выполняющее обратное преобразование.

Библиотека не определяет способ получения данных из памяти преобразователя (или из другого хранилища, если датчик не имеет встроенной памяти), а выполняет только декодирование уже полученных данных.

Библиотека может использоваться совместно с библиотекой **ltr25api** для разбора данных TEDS датчиков, подключенных ко входам модуля **LTR25** крейтовой системы LTR. Однако она может использоваться и отдельно для разбора TEDS данных, полученных иным способом.

3.2 Общие сведения о формате данных TEDS

Преобразователи, соответствующие стандарту IEEE 1451.4, имеют энергонезависимую память, в которой хранится электронная спецификация данного преобразователя, именуемая TEDS (transducer electronic datasheet). Данная информация, должна хранится в специальном формате, описанном в данном стандарте.

Для оптимального использования ограниченного места в памяти преобразователя, формат позволяет кодировать поля с помощью произвольного числа битов, т.е. в отличие от большинства других форматов поля могут быть не выравнены на байтовые границы.

Данные TEDS всегда начинаются с фиксированного блока базовой информации (Basic TEDS), которая занимает 64 бита и включает в себя информацию о производителе и модели преобразователя, а также о версии и серийном номере конкретного экземпляра.

Каждый производитель должен иметь свой уникальный зарегистрированный идентификатор. Список идентификаторов можно посмотреть на странице сайта IEEE, а также скачать в виде файла определенного IEEE 1451.4 формата. Номера кодов

моделей преобразователей, связанные с данным идентификатором производителя, определяются непосредственно самим производителем. Также производителем могут быть определены связанные с его идентификатором шаблоны производителя для кодирования информации о преобразователе, которая не может быть описана стандартными шаблонами (см. ниже).

Остальная часть данных TEDS, идущая после базовой информации, не является фиксированной и зависит от типа преобразователя. Эта область TEDS разбита на отдельные блоки. Каждый блок содержит информацию, соответствующую одному из шаблонов, который определяет, как декодировать данные блока и какое значение они имеют. Шаблон определяется идентификатором производителя, с которым связан шаблон, а также идентификатором шаблона, уникальным для данного производителя. Также в IEEE 1451.4 определен набор стандартных шаблонов, не связанных с конкретным производителем. Стандартные шаблоны позволяют описать общие свойства многих типичных вариантов преобразователей, а также результаты калибровки преобразователя. Длина идентификатора шаблона может быть своя у каждого производителя, но должна быть фиксированная для всех шаблонов одного производителя. Все стандартные шаблоны имеют длину идентификатора 8 бит.

Каждый блок данных начинается с селектора, состоящего из 2-х бит, который и определяет, какой тип шаблона используется для разбора данных этого блока: стандартный шаблон (0), шаблон производителя преобразователя с идентификатором из базовой информации (1), пользовательский шаблон или шаблон другого производителя, код которого указан после селектора (2), либо может быть признаком окончания данных TEDS, описываемых шаблонами (3). В первых трех случаях следом за селектором (или кодом производителя для селектора с кодом 2) идет идентификатор шаблона, за которым уже следуют данные, закодированные в соответствии с указанным шаблоном. Завершаются данные TEDS блоком с селектором с кодом 3, после которого идет один завершающий бит, указывающих в каком формате представлены оставшиеся данные: в виде пользовательской ASCII строки (1) или данных в произвольном формате (0).

Для описания шаблонов стандарт IEEE 1451.4 определяет специальный язык TDL (Template Description Language) и формат файла для их хранения и подключения к приложению разбора данных TEDS. Эти файлы хранятся не в памяти датчика, а вместе с программой разбора данных TEDS. В общем случае по идентификатору шаблона и идентификатору производителя (для нестандартных шаблонов), извлеченных из данных TEDS преобразователя, программа разбора может найти описание нужного шаблона в файлах и по нему понять, как интерпретировать остальные данные блока. Описание шаблона может содержать как определение фиксированных значений свойств (общих для всех преобразователей, описываемых шаблоном, и не требующих извлечения информации из данных TEDS), так и свойств, значения которых берутся из данных TEDS. В последнем случае шаблон явно определяет, сколько бит занимает значение свойства, тип данных (определяет каким образом значение закодировано) и значения дополнительных параметров, которые требуются для некоторых типов для вычисления значения свойства из закодированного числа в TEDS.

Стандарт определяет типы для целых чисел, перечислений, даты, символов (5-битных, ASCII или Unicode) и 3 типа для представления вещественных чисел (в виде числа с плавающей запятой, целого числа с линейным разрешением или целого числа с относительным разрешением) для выбора оптимального представления для требуемого диапазона и точности. Данные также могут быть закодированы в виде массива произвольной длины, каждый элемент которого состоит из одинакового набора свойств

стандартных типов.

Помимо этого шаблон может определять условные блоки информации. В этом случае в TEDS записано значение, определяющее, какая из ветвей описания шаблона будет использована для определения далее идущего набора свойств и их формата, что в частности позволяет включать в TEDS часть информации, только если она действительно актуальна для данного преобразователя, или предоставить на выбор несколько вариантов кодирования одних параметров (например, в зависимости от требуемой точности для преобразователя).

Наличие универсального языка описания шаблонов позволяет расширять количество шаблонов, которое может декодировать приложение, путем добавления внешних файлов с описаниями шаблонов без изменения самой программы разбора.

В связи с тем, что без описания шаблона невозможно извлечь связанную с ним информацию и даже узнать ее размер, то в случае обнаружения блока данных, для которого программа разбора не знает описания шаблона, дальнейший разбор данных TEDS становится невозможным.

Формат данных TEDS позволяет хранить любое количество шаблонов в любом порядке при условии достаточного места в памяти преобразователя.

3.3 Особенности реализации библиотеки ltedsapi и ее ограничения

Особенностью библиотеки ltedsapi является то, что данная библиотека не использует файлы описания шаблонов на языке TDL. Вместо этого библиотека явно реализует свою функцию разбора для каждого поддерживаемого стандартного шаблона (а также для всех шаблонов производителя "Л Кард") и определяет свою структуру, содержащую всю декодированную информацию, соответствующую данному шаблону, в которой соответствующая функция и возвращает результат разбора.

Это сильно упрощает как реализацию самой библиотеки (что позволяет реализовать ее на языке С без внешних зависимостей), так и ее использование в приложении, так как данный подход позволяет явно определить структуры для хранения результатов разбора, а не возвращать свойства обобщенным списком, который потребовал бы дополнительного анализа и разбора со стороны приложения.

В то же время это накладывает ограничение, что библиотека может полностью разобрать данные TEDS, только если они представлены в виде блоков, описываемых шаблонами, разбор которых реализован в библиотеке. Однако библиотека предоставляет отдельные низкоуровневые функции для декодирования свойств каждого типа или других управляющих конструкций, что позволяет пользователю при необходимости явно реализовать разбор данных, описанных шаблоном, функция разбора которого не реализована в библиотеке, в случае необходимости.

Помимо реализации разбора стандартных шаблонов библиотека определяет значения и функции для разбора данных, специфичных для производителя "Л Кард".

3.4 Стандартная последовательность вызовов

Стандартно алгоритм разбора данных TEDS с помощью данной библиотеки выглядит следующим образом:

- 1. Чтение данных TEDS и сохранение их в массив байт. Выполняется внешними средствами. Массив должен оставаться действительным в течение всего времени разбора данных.
- 2. Создание экземпляра структуры TLTEDS_DECODE_CONTEXT, представляющей собой контекст разбора данных.
- 3. Инициализация созданного контекста разбора данных с помощью функции LTEDS DecodeInit(), указав буфер с данными TEDS и его размер в байтах.
- 4. Извлечение базовой информации TEDS с помощью LTEDS GetBasicInfo().
- 5. Извлечение значения селектора блока данных с помощью LTEDS_GetSelector().
- 6. Анализ значения селектора:
 - Если значение селектора равно LTEDS_SEL_STANDARD, то переход к разбору стандартного шаблона (пункт 7).
 - Если значение селектора равно LTEDS_SEL_MANUFACTURER, то переход к пункту 11.
 - Если значение селектора равно LTEDS_SEL_OTHER_MANUFACTURER, то переход к пункту 10.
 - Если значение селектора равно LTEDS SEL END, то переход к пункту 14.
- 7. Извлечение идентификатора стандартного шаблона с помощью функции LTEDS GetStdTemplateID().
- 8. По полученному идентификатору выбрать функцию разбора для соответствующего стандартного шаблона и вызвать ее. Если нет функции разбора стандартного шаблона с полученным идентификатором, то переход к пункту 15.
- 9. Переход к разбору следующего блока данных пункт 6.
- 10. Извлечение идентификатора производителя, к которому относится шаблон, с помощью LTEDS GetManufacturerID().
- 11. Если известен размер идентификатора шаблона для идентификатора производителя (из базовой информации или полученного на этапе 10), то получение идентификатора шаблона производителя с помощью LTEDS_GetManufacturerTemplateID() с указанием этого размера. Иначе переход к пункту 15.
- 12. Если пользователем или библиотекой реализован разбор шаблона, определяемого идентификатором производителя и идентификатором шаблона, то вызвать эту функцию разбора, иначе переход к пункту 15.
- 13. Переход к разбору следующего блока данных пункт 6.
- 14. Получение расширения завершающего селектора с помощью функции LTEDS_GetEndExtendedSelector(), определяющего формат далее идущих пользовательских данных. Опциональный разбор этих данных при наличии достаточной информации для их разбора.
- 15. Завершение разбора данных TEDS (из-за найденного окончания данных TEDS или .отсутствия информации о способе представления дальнейших данных).

Константы, типы данных и функции библиотеки

4.1 Общие определения и типы

4.1.1 Константы и макроопределения

Константа	Значение	Описание	
LTEDS_CHECKSUM_BLOCK_LEN	32	Размер блока в байтах, защищаемого кон-	
LIEDS_CHECKSOM_BLUCK_LEN	32	трольной суммой, в данных от TEDS	
LTEDS_DATE_MIN_YEAR	1998	Минимальный год, который может быть	
LIEDS_DAIE_MIN_IEAR	1990	закодирован в поле типа Date в TEDS	
I TEDS LINING VAL NOT LISED	Oxffffffff	Значение, указывающее, что свойство ти-	
LTEDS_UNINT_VAL_NOT_USED	OXFFFFFF	па UnInt не используется в TEDS	

4.1.2 Коды ошибок

Тип: e_LTEDS_ERRORS				
Описание: Коды ошибок, которые могут возвращать функции данной биб-				
лиотеки				
Константа	Значение	Описание		
LTEDS_OK	0			
LTEDS_ERROR_INSUF_SIZE	-12000	Недостаточно места в данных TEDS для выполнения операции		
LTEDS_ERROR_CHECKSUM	-12001	Неверное значение контрольной суммы в данных TEDS		
LTEDS_ERROR_INVALID_BITSIZE	-12002	Неверно задан битовый размер дан- ных TEDS		
LTEDS_ERROR_UNSUPPORTED_FORMAT	-12003	He поддерживается указанный формат данных TEDS		
LTEDS_ERROR_ENCODE_VALUE	-12004	Неверно указано значение для ко- дирования в TEDS		
LTEDS_ERROR_UNKNOWN_SEL_CASE	-12005	Неизвестный вариант выбора ветв- ления данных TEDS		

4.1.3 Набор флагов, определяющих свойства данных TEDS

Тип: e_LTEDS_DATA_FLAGS			
Описание: Набор флагов, определяющих свойства данных TEDS			
Константа	Значение	Описание	
LTEDS_DATA_FLAG_HAS_CHECKSUM	(0x1 << 0)	Признак наличия байтов контрольной суммы в данных TEDS. По умолчанию библиотека обрабатывает данные TEDS, из которых уже удалены байты контрольной суммы. Если указан флаг, то библиотека считает, что каждый блок из LTEDS_CHECKSUM_BLOCK_LEN байт содержит первым байтом контрольную сумму и сама извлекает и проверяет ее при разборе данных. Поддерживается только при разборе данных TEDS.	

4.1.4 Коды селекторов TEDS.

Тип: e_LTEDS_SEL_TYPE

Описание: Данное перечисление описывает возможные значения селектора. Селектор определяет, как интерпретировать данные каждого блока в области TEDS, идущей после базовой информации. Каждый последующий блок данных содержит вначале селектор, значение которого можно получить с помощью LTEDS_GetSelector()

Мощью LIEDS_GetSelector() Константа	Значение	Описание
LTEDS_SEL_STANDARD	0	Указывает, что далее идет стандартный шаблон, описанный в IEEE 1451.4. После селектора следует идентификатор стандартного шаблона из 8 бит, который можно получить через LTEDS_GetStdTemplateID().
LTEDS_SEL_MANUFACTURER	1	Указывает, что далее идут данные, определенные шаблоном производителя, идентификатор которого был указан в базовой информации. Размер идущего далее поля идентификатора шаблона зависит от производителя и может отличаться от стандартного. Данная библиотека сама не разбирает данные шаблонов производителей (за исключением шаблонов производителя "Л Кард"), однако их разбор можно реализовать с помощью низкоуровневых функций в соответствии с описанием этих шаблонов
LTEDS_SEL_OTHER_MANUFACTURER	2	Указывает, что далее идут данные, определенные шаблоном производителя, отличного от того, идентификатор которого был указан в базовой информации. После селектора идет 14-битный идентификатор производителя, с которым связан шаблон, описывающий данные блока, после чего формат аналогичен селектору LTEDS_SEL_MANUFACTURER.
LTEDS_SEL_END	3	Данный селектор указывает окончание данных TEDS, описываемых шаблонами. После него идет расширение завершающего шаблона, имеющее значение из перечисления е_LTEDS_EXTSEL_TYPE и определяющее в каком формате идут далее пользовательские данные.

4.1.5 Коды расширения завершающего селектора.

Тип: e_LTEDS_EXTSEL_TYPE

Описание: Расширение завершающего селектора дополняет селектор типа LTEDS_SEL_END и определяет, в каком формате идут далее возможные пользовательские данные. Значение может быть получено с помощью LTEDS_GetEndExtendedSelector().

Константа	Значение	Описание	
		Данное значение указывает, что далее идут	
LTEDS_EXTSEL_FREE_FORM	0	пользовательские данные в произвольном	
		формате	
		Данное значение указывает, что далее идут	
LTEDS_EXTSEL_ASCII	1	пользовательские данные в виде ASCII-	
		строки	

4.1.6 Стандартные идентификаторы шаблонов

Tuπ: e_LTEDS_STD_TEMPLATE_ID

Описание: Идентификатор шаблона вместе с идентификатором производителя позволяет однозначно идентифицировать шаблон, описывающий структуру данных в блоке TEDS.

Данное перечисление определяет идентификаторы стандартных шаблонов, не связанных с производителем. Идентификатор стандартного шаблона идет за селектором типа LTEDS_SEL_STANDARD и может быть получен с помощью LTEDS_GetStdTemplateID().

Для некоторых стандартных шаблонов в библиотеке определена своя структура для сохранения информации и своя функция для извлечения и кодирования этой информации. Эти типы и функции описаны в подразделах, посвященных соответствующему шаблону.

Для остальных стандартных шаблонов соответствующие функции и структуры могут быть добавлены по запросу.

Константа	Значение	Описание
LTEDS_STD_TEMPLATE_ID_ACCFORCE	25	Шаблон для акселерометра или датчика силы (раздел Шаблон Accelerometer/Force transducer (25)).
LTEDS_STD_TEMPLATE_ID_CHARGE_ APLIFIER	26	Шаблон для усилителя заряда с подключенным пьезоэлектрическим акселерометром.
LTEDS_STD_TEMPLATE_ID_MICROPHONE	27	Шаблон для микрофона с встро- енным предусилителем.
LTEDS_STD_TEMPLATE_ID_PREAM_ MICROPHONE	28	Шаблон для предусилителя микрофона с опциями для подключенного микрофона.
LTEDS_STD_TEMPLATE_ID_CAPACITIVE_ MICROPHONE	29	Шаблон для конденсаторного микрофона.

LTEDS_STD_TEMPLATE_ID_HL_VOLTAGE_ OUTPUT	30	Шаблон для линейного датчи- ка общего назначения с выходом по напряжению (раздел Шаблон High Level Voltage (30)).
LTEDS_STD_TEMPLATE_ID_CURRENT_ LOOP_OUTPUT	31	Шаблон для линейного датчика общего назначения с выходом по току.
LTEDS_STD_TEMPLATE_ID_RESISTANCE_ SENSOR	32	Шаблон для датчика с резистивным выходом.
LTEDS_STD_TEMPLATE_ID_BRIDGE_ SENSOR	33	Шаблон для датчика с выходом в виде моста сопротивлений (раздел Шаблон Bridge Sensors (33)).
LTEDS_STD_TEMPLATE_ID_LVDT_RVDT	34	Шаблон для дифференциального трансформатора для измерения линейных (LVDT) / вращательных (RVDT) перемещений.
LTEDS_STD_TEMPLATE_ID_STRAIN_GAGE	35	Шаблон для тензодатчика в мо- стовых схемах
LTEDS_STD_TEMPLATE_ID_ THERMOCOUPLE	36	Шаблон для термопары.
LTEDS_STD_TEMPLATE_ID_RTD	37	Шаблон для термосопротивления.
LTEDS_STD_TEMPLATE_ID_THERMISTOR	38	Шаблон для термисторов с характеристикой, соответствующей уравнению Стейнхарта.
LTEDS_STD_TEMPLATE_ID_ POTENTIOMETRIC_VDIV	39	Шаблон для потенциометриче- ского делителя напряжения
LTEDS_STD_TEMPLATE_ID_CAL_TABLE	40	Шаблон для определения калибровочной таблицы, задающей отклонения передаточной функции датчика от номинальной линейной в указанных точках (раздел Шаблон Calibration Table (40)).
LTEDS_STD_TEMPLATE_ID_CAL_CURVE	41	Шаблон для задания передаточной функции в виде фрагментов, каждый из которых задается полиномом
LTEDS_STD_TEMPLATE_ID_FREQ_RESP_ TABLE	42	Шаблон для задания зависимо- сти отклонения амплитуды от ча- стоты сигнала (АЧХ)
LTEDS_STD_TEMPLATE_ID_CHARGE_ AMPL_FORCE	43	Шаблон для усилителя заряда с подключенным пьезоэлектрическим датчиком силы

4.1.7 Базовая информация TEDS.

Тип: TLTEDS_INFO_BASIC

Описание: Структура содержит данные из базовой информации TEDS (Basic TEDS). Базовая информация всегда содержится в начале данных TEDS в фиксированном виде и содержит информацию для идентификации преобразователя, включая производителя, модель, версию и серийный номер преобразователя. Данная информация извлекается из данных TEDS самой первой с помощью функции LTEDS_GetBasicInfo().

Поле	Тип	Описание поля
ManufacturerID	WORD	Уникальный идентификатор производителя.
ModelNumber	WORD	Номер модели, определяющий тип преобразова-
		теля.
VersionLetter	CHAR	Буквенная версия преобразователя.
VersionNumber	BYTE	Численная версия преобразователя.
SerialNumber	DWORD	Серийный номер данного экземпляра преобра-
		зователя.

4.1.8 Информация о дате

Тип: TLTEDS_INFO_DATE				
Описание: Структура содержит информацию о дате, полученной из данных				
TEDS. Все поля равные 0 соответствуют недействительной дате.				
Поле	Тип	Описание поля		
Day	BYTE	Число (день месяца от 1 до 31)		
Month	BYTE	Месяц (от 1 до 12)		
		Год. Минимальное значение, которое может быть		
Year	WORD	закодировано в TEDS определено константой		
		LTEDS_DATE_MIN_YEAR		

4.2 Разбор данных TEDS

4.2.1 Типы данных для декодирования TEDS

4.2.1.1 Контекст разбора данных TEDS.

Tuπ: TLTEDS_DECODE_CONTEXT

Описание: Данная структура содержит информацию о текущем состоянии разбора данных в формате TEDS, включая ссылку на массив данных и текущую позицию разбора.

Данная структура должна быть проинциализирована с помощью LTEDS_DecodeInit() перед началом работы.

Функции извлечения информации из закодированных TEDS данных принимают данную структуру первым параметром, извлекают данные и обновляют текущую позицию разбора.

Как правило пользователю не требуется обращаться к полям данной структуры напрямую, т.к. их изменяют и используют сами функции разбора данных TEDS. Однако они могут быть использованы для отладочных целей или при написании разбора блока данных в пользовательском формате.

Поле	Тип	Описание поля
Data	const BYTE *	Указатель на начало массива разбираемых TEDS
		данных.
DataLen	DWORD	Размер массива Data в байтах.
ProcBitPos	DWORD	Текущая позиция обработки данных в битах от на-
		чала массива.
Flags	DWORD	Флаги из e_LTEDS_DATA_FLAGS, управляющие обра-
		боткой.
Reserved	DWORD [5]	Резерв.

4.2.2 Функции декодирования TEDS

4.2.2.1 Инициализация контекста разбора данных TEDS.

Формат: INT LTEDS_DecodeInit (TLTEDS_DECODE_CONTEXT *ctx, const BYTE *data, DWORD dataLen, DWORD flags)

Описание:

Данная функция вызывается перед остальными функциями разбора данных TEDS, чтобы проинициализровать контекст разбора.

В ней задается буфер, в котором уже должны находится прочитанные данные TEDS преобразователя и флаги обработки. Переданный буфер должен оставаться действительным в течение всего времени обработки.

Допускается вызывать данную функцию повторно на ранее используемый контекст, чтобы снова сбросить обработку на начало или начать обработку другого массива.

Параметры:

ctx — Структура контекста разбора данных TEDS, которая будет проинициализрована.

data — Массив с данными из TEDS размером в len-байт.

dataLen — Размер массива data в байтах.

flags — Набор флагов из e_LTEDS_DATA_FLAGS, управляющих обработкой данных.

Возвращаемое значение:

Код ошибки.

4.2.2.2 Извлечение базовой информации из данных TEDS.

Формат: INT LTEDS_GetBasicInfo (TLTEDS_DECODE_CONTEXT *ctx, TLTEDS_INFO_BASIC *info)

Описание:

Данная функция извлекает базовую информацию о преобразователе (Basic TEDS). Эта информация должна присутствовать в начале TEDS любого преобразователя. Таким образом, эта функция как правило вызывается первой один раз при начале разбора данных TEDS.

Параметры:

ctx — Контекст разбора данных TEDS.

info — Структура, которая будет заполнена базовой информацией о преобразователе.

Возвращаемое значение:

4.2.2.3 Извлечение селектора из данных TEDS.

Φορματ: INT LTEDS_GetSelector (TLTEDS_DECODE_CONTEXT *ctx, BYTE *selector)

Описание:

Данная функция позволяет получить из данных TEDS селектор, который определяет, что за данные идут дальше. Действительные значения селектора определяются перечислением e_LTEDS_SEL_TYPE.

Данные за базовой информацией хранятся блоками, каждый из которых начинается с селектора, определяющего, что за информация хранится в блоке.

Параметры:

 \mathbf{ctx} — Контекст разбора данных TEDS.

selector — Полученный код селектора. Значение из $e_LTEDS_SEL_TYPE$.

Возвращаемое значение:

Код ошибки.

4.2.2.4 Извлечение расширения завершающего селектора из данных TEDS.

Формат: INT LTEDS_GetEndExtendedSelector (TLTEDS_DECODE_CONTEXT *ctx, ВҮТЕ *extsel)

Описание:

Данная функция позволяет получить из данных TEDS расширение завершающего селектора. Расширение идет за селектором типа LTEDS_SEL_END и определяет, в какой форме идут оставшиеся данные.

Параметры:

ctx — Контекст разбора данных TEDS.

 \mathbf{extsel} — Полученный код расширения селектора. Значение из $\mathbf{e_LTEDS_EXTSEL_TYPE}$.

Возвращаемое значение:

4.2.2.5 Извлечение идентификатора стандартного шаблона из данных TEDS.

ΦopMat: INT LTEDS_GetStdTemplateID (TLTEDS_DECODE_CONTEXT *ctx, BYTE *id)

Описание:

Данная функция позволяет получить из данных TEDS идентификатор стандартного шаблона, который определяет в соответствии с каким шаблоном закодированы оставшиеся данные текущего блока и позволяет выбрать нужную функцию для их разбора.

Стандартные значения идентификаторов определены перечислением e_LTEDS_ STD_TEMPLATE_ID.

Идентификатор находится в данных TEDS после селектора типа LTEDS_SEL_STANDARD.

Данная функция предполагает, что идентификатор кодируется с помощью 8 бит, что справедливо для всех стандартных шаблонов.

Параметры:

ctx — Контекст разбора данных TEDS.

id — Полученный идентификатор шаблона. Значение из e_LTEDS_STD_TEMPLATE_ ID.

Возвращаемое значение:

Код ошибки.

4.2.2.6 Извлечение идентификатора шаблона производителя из данных TEDS.

Φορματ: INT LTEDS_GetManufacturerTemplateID (TLTEDS_DECODE_CONTEXT *ctx, DWORD bitsize, DWORD *id)

Описание:

Данная функция позволяет получить из данных TEDS идентификатор шаблона, связанного с каким-либо производителем, который вместе с идентификатором производителя определяет, каким образом закодированы оставшиеся данные текущего блока.

В отличие от идентификатора стандартного шаблона, идентификатор шаблона производителя может иметь размер отличный от стандартного. Размер определяется идентификатором производителя. Данная функция предполагает, что идентификатор шаблона всегда укладывается в 32 бита.

Идентификатор шаблона производителя идет сразу за селектором типа LTEDS_ SEL_MANUFACTURER или за идентификатором производителя после селектора типа LTEDS_SEL_OTHER_MANUFACTURER.

Параметры:

 \mathbf{ctx} — Контекст разбора данных TEDS.

bitsize — Размер идентификатора в битах для данного производителя.

id — Полученный идентификатор шаблона.

Возвращаемое значение:

4.2.2.7 Извлечение идентификатора производителя из TEDS данных

Формат: INT LTEDS_GetManufacturerID (TLTEDS_DECODE_CONTEXT *ctx, WORD *id)

Описание:

Данная функция предназначена для получения из данных TEDS идентификатора производителя. Используется при разборе блока данных с селектором LTEDS_SEL_OTHER_MANUFACTURER сразу после чтения селектора, чтобы получить информацию, шаблон какого производителя используется для кодирования данных блока и определить размер идентификатора шаблона.

Параметры:

 \mathbf{ctx} — Контекст разбора данных TEDS.

id — Полученный идентификатор производителя.

Возвращаемое значение:

Код ошибки.

4.2.2.8 Проверка, является ли значение даты действительным значением

Формат: BOOLEAN LTEDS_DateIsValid (const TLTEDS_INFO_DATE *date)

Описание:

Функция проверяет, является ли указанная информация о дате, полученной из данных TEDS, действительной.

Параметры:

date — Информация о дате, которую надо проверить.

Возвращаемое значение:

TRUE если поля структуры соответствуют действительной дате, FALSE — иначе.

4.2.3 Низкоуровневые функции декодирования базовых типов

4.2.3.1 Извлечение заданного количества бит из данных TEDS.

Формат: INT LTEDS_GetBits (TLTEDS_DECODE_CONTEXT *ctx, DWORD bitsize, void *result)

Описание:

Данная функция извлекает заданное количество бит, начиная с текущей позиции контекста декодирования данных TEDS, и передвигает текущую позицию на количество извлеченных бит.

Биты складываются в выходной массив. Первый извлеченный бит помещается в младший разряд байта с младшим адресом переданного массива.

Данная функция является базовой для реализации всех остальных функций декодирования данных TEDS.

Параметры:

 \mathbf{ctx} — Контекст разбора данных TEDS.

bitsize — Количество бит, которое необходимо извлечь из данных TEDS.

result — Массив, в который будут помещены извлеченные данные. Должен быть размером не менее чем на (bitsize + 7)/8 байт.

Возвращаемое значение:

Код ошибки.

4.2.3.2 Извлечение информации о дате из данных TEDS.

Формат: INT LTEDS_GetDate (TLTEDS_DECODE_CONTEXT *ctx, DWORD bitsize, TLTEDS_INFO_DATE *date)

Описание:

Данная функция извлекает и разбирает данные TEDS, содержащие дату в виде целого числа числа заданного размера, соответствующего количеству дней, с LTEDS_DATE_MIN_YEAR года.

Функция предназначена для получения значения свойства с типом Date.

Если свойство имеет значение "не используется", то будет возвращена недействительная дата со всеми нулевыми полями. Проверить действительность даты можно с помощью функции LTEDS_DateIsValid().

Параметры:

 \mathbf{ctx} — Контекст разбора данных TEDS.

bitsize — Количество бит, которое занимает значение в TEDS.

date — Полученное значение даты.

Возвращаемое значение:

4.2.3.3 Извлечение целого числа из данных TEDS.

Φopman: INT LTEDS_GetUnInt (TLTEDS_DECODE_CONTEXT *ctx, DWORD bitsize, DWORD *val)

Описание:

Данная функция извлекает целое число из данных TEDS.

Функция предназначена для получения значения свойства с типом UnInt.

Возвращает значение LTEDS_UNINT_VAL_NOT_USED, если свойство имеет значение "не используется".

Параметры:

ctx — Контекст разбора данных TEDS.

bitsize — Количество бит, которое занимает значение в TEDS.

val - Полученное значение.

Возвращаемое значение:

Код ошибки

4.2.3.4 Извлечение 5-битных символов из данных TEDS.

 Φ opMat: INT LTEDS_GetChr5 (TLTEDS_DECODE_CONTEXT *ctx, DWORD bitsize, CHAR *str)

Описание:

Данная функция извлекает фиксированное количество символов из данных TEDS, закодированных специальным пятибитным кодом, и сохраняет их в виде ASCII строки, оканчивающейся нулевым символом.

Функция предназначена для получения значения свойства типа Chr5. Количество символов определяется по размеру, который занимает значение в данных TEDS.

Параметры:

ctx — Контекст разбора данных TEDS.

bitsize — Количество бит, которое занимает значение в TEDS. Должно быть кратно 5.

 ${f str}$ — Массив, в которой сохраняется прочитанная ASCII строка с завершающим нулевым символом. Должен содержать места не менее чем на bitsize/5+1 байт.

Возвращаемое значение:

4.2.3.5 Извлечение 7-битных ASCII символов из данных TEDS.

Формат: INT LTEDS_GetASCII (TLTEDS_DECODE_CONTEXT *ctx, DWORD bitsize, CHAR *str)

Описание:

Данная функция извлекает фиксированное количество ASCII-символов из данных TEDS, и сохраняет их в виде ASCII строки, добавляя завершающий нулевой символ.

Функция предназначена для получения значения свойства типа ASCII. Количество символов определяется по размеру, который занимает значение в данных TEDS.

Параметры:

ctx — Контекст разбора данных TEDS.

bitsize — Количество бит, которое занимает значение в TEDS. Должно быть кратно 7.

 ${f str}$ — Массив, в которой сохраняется прочитанная ASCII строка с завершающим нулевым символом. Должен содержать места не менее чем на bitsize/5+1 байт.

Возвращаемое значение:

Код ошибки.

4.2.3.6 Извлечение вещественного числа с плавающей точкой из данных TEDS.

Φορματ: INT LTEDS_GetSingle (TLTEDS_DECODE_CONTEXT *ctx, double *val)

Описание:

Данная функция извлекает из данных TEDS вещественное число, закодированное в виде числа с плавающей запятой в 32-битном формате..

Предназначена для получения значения свойства типа SINGLE.

Параметры:

ctx — Контекст разбора данных TEDS.

val — Полученное число.

Возвращаемое значение:

4.2.3.7 Извлечение вещественного числа с постоянным разрешением из данных TEDS.

Формат: INT LTEDS_GetConRes (TLTEDS_DECODE_CONTEXT *ctx, DWORD bitsize, double start_value, double tolerance, double *val)

Описание:

Данная функция извлекает из данных TEDS вещественное число, закодированное целым числом с линейным соответствием кода и результата на заданном интервале. Результат равен $start_value + tolerance * teds_value$, где teds_value—извлеченное целое число из данных TEDS, а $start_value$ и tolerance явно передаются и соответствуют значениям, заданным в описании шаблона.

Функция возвращает значение NAN, если обнаружен код, соответствующий недействительному значению.

Функция предназначена для получения значения свойства с типом ConRes.

Параметры:

ctx — Контекст разбора данных TEDS.

bitsize — Количество бит, которое занимает значение в TEDS.

start value — Начало интервала, к которому приводится результат.

tolerance — Шаг изменения результирующего значения.

 $\mathbf{val} - \Pi$ олученное число.

Возвращаемое значение:

Код ошибки.

4.2.3.8 Извлечение вещественного числа с относительным разрешением из данных TEDS.

Φορματ: INT LTEDS_GetConRelRes (TLTEDS_DECODE_CONTEXT *ctx, DWORD bitsize, double start_value, double tolerance, double *val)

Описание:

Данная функция извлекает из данных TEDS вещественное число, закодированное целым числом с логарифмическим соответствием кода и результата на заданном интервале. Результат равен $start_value*(1+2*tolerance)^{teds_value}$, где teds_value — извлеченное целое число из данных TEDS, а $start_value$ и tolerance явно передаются и соответствуют значениям, заданным в описании шаблона.

Функция возвращает значение NAN, если обнаружен код, соответствующий недействительному значению.

Функция предназначена для получения значения свойства с типом ConRelRes.

Параметры:

 \mathbf{ctx} — Контекст разбора данных TEDS.

bitsize — Количество бит, которое занимает значение в TEDS.

start value — Начало интервала, к которому приводится результат.

tolerance — Шаг изменения результирующего значения в логарифмическом масштабе..

 $\mathbf{val} - \Pi$ олученное число.

Возвращаемое значение:

4.2.3.9 Извлечение значения перечисления из данных TEDS.

Формат: INT LTEDS_GetEnumVal (TLTEDS_DECODE_CONTEXT *ctx, DWORD bitsize, DWORD *val)

Описание:

Данная функция извлекает из данных TEDS целое число, соответствующее значению перечисления.

Функция предназначена для получения значения свойства с типом Enum.

Параметры:

 \mathbf{ctx} — Контекст разбора данных TEDS.

bitsize — Количество бит, которое занимает значение в TEDS.

val — Полученное значение.

Возвращаемое значение:

Код ошибки.

4.2.3.10 Извлечение кода, определяющего вариант ветвления, из данных TEDS.

Формат: INT LTEDS_GetSelectCase (TLTEDS_DECODE_CONTEXT *ctx, DWORD bitsize, DWORD *val)

Описание:

Данная функция извлекает из данных TEDS целое число, соответствующее коду выбора варианта обработки шаблона из конструкции SelectCase.

Параметры:

ctx — Контекст разбора данных TEDS

bitsize — Количество бит, которое занимает значение.

val — Полученный код выбора варианта ветвления.

Возвращаемое значение:

Код ошибки

4.2.3.11 Извлечение размера массива из данных TEDS.

Формат: INT LTEDS_GetStructArraySize (TLTEDS_DECODE_CONTEXT *ctx, DWORD bitsize, DWORD *val)

Описание:

Данная функция извлекает из данных TEDS целое число, соответствующее размеру массива, соответствующего конструкции StructArray.

Параметры:

 \mathbf{ctx} — Контекст разбора данных TEDS.

bitsize — Количество бит, которое занимает значение.

val — Полученный размер массива.

Возвращаемое значение:

4.2.3.12 Проверка контрольной суммы блока данных TEDS.

Формат: INT LTEDS_CheckBlockSum (TLTEDS_DECODE_CONTEXT *ctx, DWORD start_bytepos)

Описание:

Данная функция проверяет контрольную сумму в блоке данных TEDS, который начинается с указанного байта от начала массива и занимает LTEDS_CHECKSUM_ BLOCK_LEN байт. Первый байт этого блока должен быть равен сумме остальных.

Данная функция автоматически вызывается функциями разбора данных TEDS при вызове LTEDS_GetBits() в случае перехода границы блока, если в контексте разбора был указан флаг LTEDS_DATA_FLAG_HAS_CHECKSUM, поэтому как правило не требует явного вызова.

Сама функция не обновляет текущей позиции в контексте.

Параметры:

ctx — Контекст разбора данных TEDS

start bytepos — Позиция начала проверяемого блока в байтах от начала данных TEDS.

Возвращаемое значение:

Код ошибки.

4.3 Кодирование данных TEDS

4.3.1 Типы для кодирования данных TEDS

4.3.1.1 Контекст кодирования данных TEDS.

Tuπ: TLTEDS_ENCODE_CONTEXT

Описание: Данная структура содержит информацию о текущем состоянии кодирования данных в формат TEDS, включая ссылку на массив данных и текущую позицию записи..

Данная структура должна быть проинциализирована с помощью LTEDS_EncodeInit() перед началом работы.

Функции кодирования данных в TEDS принимают данную структуру первым параметром, сохраняют переданные значения в массив данных TEDS, начиная с текущей позиции записи и обновляют текущую позицию.

Как правило пользователю не требуется обращаться к полям данной структуры напрямую, т.к. их изменяют и используют сами функции кодирования. Однако они могут быть использованы для отладочных целей или при написании кодирования блока данных в пользовательском формате.

Поле	Тип	Описание поля
Data	BYTE *	Указатель на начало массива, в который будут со- хранены данные TEDS
DataLen	DWORD	Размер массива Data в байтах
ProcBitPos	DWORD	Текущая позиция записи данных в битах от начала массива
Flags	DWORD	Флаги из e_LTEDS_DATA_FLAGS, управляющие обработкой.
Reserved	DWORD [5]	Резерв

4.3.2 Функции кодирования данных TEDS

4.3.2.1 Инициализация контекста кодирования данных TEDS.

Формат: INT LTEDS_EncodeInit (TLTEDS_ENCODE_CONTEXT *ctx, BYTE *data, DWORD dataLen, DWORD flags)

Описание:

Данная функция вызывается перед остальными функциями кодирования данных TEDS, чтобы проинициализровать контекст.

В ней задается уже выделенный буфер для сохранения данных в формате TEDS, его размер и флаги. Переданный буфер должен оставаться действительным в течение всего времени кодирования данных.

Допускается вызывать данную функцию повторно на ранее используемый контекст, чтобы сбросить процесс кодирования для повторного использования контекста для кодирования новых данных.

Параметры:

ctx — Структура контекста кодирования данных TEDS, которая должна быть проинициализрована.

data — Массив для сохранения данных TEDS.

dataLen — Размер массива data в байтах.

flags — Набор флагов из **e_LTEDS_DATA_FLAGS**, управляющих обработкой данных. В текущей версии нет поддерживаемых флагов для кодирования.

Возвращаемое значение:

Код ошибки

4.3.2.2 Запись базовой информации в данные TEDS.

 Φ ормат: INT LTEDS_PutBasicInfo (TLTEDS_ENCODE_CONTEXT *ctx, const TLTEDS_INFO_BASIC *info)

Описание:

Данная функция записывает базовую информацию о преобразователе (Basic TEDS) в данные TEDS.

Эта информация должна присутствовать в начале данных TEDS любого преобразователя. Таким образом, эта функция как правило вызывается первой один раз при начале кодирования данных TEDS.

Параметры:

ctx — Контекст кодирования данных TEDS.

info — Структура с базовой информацией о преобразователе.

Возвращаемое значение:

4.3.2.3 Запись селектора в данные TEDS.

Формат: INT LTEDS_PutSelector (TLTEDS_ENCODE_CONTEXT *ctx, BYTE selector)

Описание:

Функция используется в тех же случаях, что и LTEDS_GetSelector() при разборе.

Параметры:

ctx — Контекст кодирования данных TEDS.

selector — Записываемый код селектора. Значение из e_LTEDS_SEL_TYPE.

Возвращаемое значение:

Код ошибки.

4.3.2.4 Запись расширения завершающего селектора в TEDS данные.

Формат: INT LTEDS_PutEndExtendedSelector (TLTEDS_ENCODE_CONTEXT *ctx, BYTE extsel)

Описание:

Функция используется в тех же случаях, что и LTEDS_GetEndExtendedSelector() при разборе.

Параметры:

ctx — Контекст кодирования данных TEDS

extsel — Записываемый код расширения селектора. Значение из e_LTEDS_EXTSEL_TYPE.

Возвращаемое значение:

Код ошибки

4.3.2.5 Запись идентификатора стандартного шаблона в данные TEDS.

Формат: INT LTEDS_PutStdTemplateID (TLTEDS_ENCODE_CONTEXT *ctx, BYTE id)

Описание:

Функция используется в тех же случаях, что и LTEDS_GetStdTemplateID() при разборе.

Параметры:

ctx — Контекст кодирования данных TEDS.

id — Записываемый идентификатор шаблона. Значение из e_LTEDS_STD_TEMPLATE_ ID.

Возвращаемое значение:

4.3.2.6 Запись идентификатора шаблона производителя в данные TEDS.

Формат: INT LTEDS_PutManufacturerTemplateID (TLTEDS_ENCODE_CONTEXT *ctx, DWORD bitsize, DWORD id)

Описание:

Функция используется в тех же случаях, что и LTEDS_GetManufacturerTemplateID() при разборе.

Параметры:

ctx — Контекст кодирования данных TEDS.

bitsize — Размер идентификатора в битах для данного производителя.

id — Записываемый идентификатор шаблона.

Возвращаемое значение:

Код ошибки.

4.3.2.7 Запись идентификатора производителя в данные TEDS.

Формат: INT LTEDS_PutManufacturerID (TLTEDS_ENCODE_CONTEXT *ctx, WORD id)

Описание:

Данная функция предназначена для записи в TEDS данных идентификатора производителя. Используется в тех же случаях, что и LTEDS_GetManufacturerID() при разборе данных.

Параметры:

ctx — Контекст кодирования данных TEDS.

id — Записываемый идентификатор производителя.

Возвращаемое значение:

4.3.3 Низкоуровневые функции кодирования базовых типов

4.3.3.1 Запись заданного количества бит в данные TEDS.

Формат: INT LTEDS_PutBits (TLTEDS_ENCODE_CONTEXT *ctx, DWORD bitsize, const void *val)

Описание:

Данная функция записывает заданное количество бит, начиная с текущей позиции контекста кодирования данных TEDS и передвигает данную позицию на записанное количество бит.

Биты извлекаются из входного массива начиная с младшего бита байта с младшим адресом.

Данная функция является базовой для реализации всех остальных функций записи данных TEDS.

Параметры:

 \mathbf{ctx} — Контекст кодирования данных TEDS.

bitsize — Количество бит, которое необходимо записать в данные TEDS.

val — Массив с данными, которые должны быть записаны в TEDS. Должен содержать не менее (bitsize + 7)/8 байт.

Возвращаемое значение:

Код ошибки.

4.3.3.2 Запись информации о дате в данные TEDS.

 Φ ормат: INT LTEDS_PutDate (TLTEDS_ENCODE_CONTEXT *ctx, DWORD bitsize, const TLTEDS_INFO_DATE *date)

Описание:

Данная функция записывает данные о дате в TEDS в виде целого числа заданного размера, содержащего количество дней с начала LTEDS_DATE_MIN_YEAR года.

Функция предназначена для записи значений свойств с типом Date.

Передача даты с нулевыми значениями всех полей означает, что свойство не используется, и будет записан соответствующий код в TEDS.

Параметры:

ctx — Контекст кодирования данных TEDS.

bitsize — Количество бит, которое занимает значение в TEDS.

date — Записываемое значение даты.

Возвращаемое значение:

4.3.3.3 Запись целого числа в данные TEDS.

Φopman: INT LTEDS_PutUnInt (TLTEDS_ENCODE_CONTEXT *ctx, DWORD bitsize, DWORD val)

Описание:

Данная функция записывает целое число в данные TEDS.

Функция предназначена для записи значения свойства с типом UnInt.

При передаче значения LTEDS_UNINT_VAL_NOT_USED в поле записывается код, указывающий, что свойство не используется.

Параметры:

ctx — Контекст кодирования данных TEDS.

bitsize — Количество бит, которое занимает значение в TEDS.

val — Значение для записи.

Возвращаемое значение:

Код ошибки.

4.3.3.4 Запись строки из 5-битных символов в данные TEDS.

Формат: INT LTEDS_PutChr5 (TLTEDS_ENCODE_CONTEXT *ctx, DWORD bitsize, const CHAR *str)

Описание:

Данная функция помещает фиксированное количество символов из входной строки в TEDS данные в виде закодированных специальным пятибитным кодом символов. На вход передается ASCII-строка минимум из требуемого количества символов, которая может содержать только заглавные английские буквы ('A' - 'Z'), пробел или символы , . / _ @.

В случае, если во входной строке обнаружен символ с кодом 0 до записи всех указанных символов, анализ входной строки прекращается и поле до указанного размера будет заполнено пробелами.

Функция предназначена для записи значения свойства типа Chr5. Количество символов определяется по размеру, который занимает значение в данных TEDS.

Параметры:

ctx — Контекст кодирования данных TEDS.

bitsize — Количество бит, которое занимает значение в TEDS. Должно быть кратно 5.

str — Массив из bitsize/5 ASCII символов из допустимого набора, которые должны быть записаны в TEDS данные.

Возвращаемое значение:

4.3.3.5 Запись строки из ASCII-символов в данные TEDS.

 Φ opMat: INT LTEDS_PutASCII (TLTEDS_ENCODE_CONTEXT *ctx, DWORD bitsize, const CHAR *str)

Описание:

Данная функция помещает фиксированное количество ASCII-символов из входной строки в TEDS данные. Входная строка может содержать только символы с 7-битными кодами (0-127).

В случае, если во входной строке обнаружен символ с кодом 0 до записи всех указанных символов, анализ входной строки прекращается и поле до указанного размера будет заполнено нулевыми символами.

Функция предназначена для записи значения свойства типа ASCII. Количество символов определяется по размеру, который занимает значение в данных TEDS.

Параметры:

ctx — Контекст кодирования данных TEDS.

bitsize — Количество бит, которое занимает значение в TEDS. Должно быть кратно 7.

 ${f str}$ — Массив из bitsize/7 ASCII символов и, которые должны быть записаны в TEDS данные.

Возвращаемое значение:

Код ошибки.

4.3.3.6 Запись вещественного числа с плавающей точкой в данные TEDS.

Формат: INT LTEDS_PutSingle (TLTEDS_ENCODE_CONTEXT *ctx, double val)

Описание:

Данная функция помещает в данные TEDS вещественное число, закодированное в виде числа с плавающей запятой в 32-битном формате.

Функция предназначена для записи значения свойства типа SINGLE.

Параметры:

ctx — Контекст кодирования данных TEDS.

val — Записываемое число.

Возвращаемое значение:

4.3.3.7 Запись вещественного числа с постоянным разрешением в данные TEDS.

Формат: INT LTEDS_PutConRes (TLTEDS_ENCODE_CONTEXT *ctx, DWORD bitsize, double start_value, double tolerance, double val)

Описание:

Данная функция записывает в TEDS вещественное число, закодированное целым числом с линейным соответствием кода и результата на заданном интервале, как указано в описании функции LTEDS_GetConRes().

Функция предназначена для записи значения свойства типа ConRes.

Параметры:

ctx — Контекст кодирования данных TEDS.

bitsize — Количество бит, которое занимает значение в TEDS.

start value — Начало интервала кодируемого значения.

tolerance — Шаг изменения кодируемого значения.

val — Записываемое значение.

Возвращаемое значение:

Код ошибки.

4.3.3.8 Запись вещественного числа с относительным разрешением в данные TEDS.

Формат: INT LTEDS_PutConRelRes (TLTEDS_ENCODE_CONTEXT *ctx, DWORD bitsize, double start_value, double tolerance, double val)

Описание:

Данная функция записывает в TEDS вещественное число, закодированное целым числом с логарифмическим соответствием кода и результата на заданном интервале, как указано в описании функции LTEDS_GetConRelRes().

Функция предназначена для записи значения свойства с типом ConRelRes.

Параметры:

ctx — Контекст кодирования данных TEDS.

bitsize — Количество бит, которое занимает значение в TEDS.

start value — Начало интервала кодируемого значения.

tolerance — Шаг изменения кодируемого значения в логарифмическом масштабе.

val — Записываемое значение.

Возвращаемое значение:

Код ошибки

4.3.3.9 Запись значения перечисления в данные TEDS.

Формат: INT LTEDS_PutEnumVal (TLTEDS_ENCODE_CONTEXT *ctx, DWORD bitsize, DWORD val)

Описание:

Данная функция записывает в данные TEDS целое число заданного размера, соответствующее значению перечисления.

Функция предназначена для записи значения свойства с типом Enum.

Параметры:

 \mathbf{ctx} — Контекст кодирования данных TEDS.

bitsize — Количество бит, которое занимает значение в TEDS.

val — Записываемое значение.

Возвращаемое значение:

Код ошибки.

4.3.3.10 Запись кода, определяющего вариант ветвления, в данные TEDS.

ΦopMat: INT LTEDS_PutSelectCase (TLTEDS_ENCODE_CONTEXT *ctx, DWORD bitsize, DWORD val)

Описание:

Данная функция записывает в данные TEDS целое число заданного размера, соответствующее коду варианта обработки шаблона из конструкции SelectCase.

Параметры:

ctx — Контекст кодирования данных TEDS.

bitsize — Количество бит, которое занимает значение.

val — Записываемый код выбора варианта ветвления.

Возвращаемое значение:

Код ошибки.

4.3.3.11 Запись размера массива в данные TEDS.

Формат: INT LTEDS_PutStructArraySize (TLTEDS_ENCODE_CONTEXT *ctx, DWORD bitsize, DWORD val)

Описание:

Данная функция записывает в данные TEDS целое число, соответствующее размеру массива для конструкции StructArray.

Параметры:

ctx — Контекст кодирования данных TEDS.

bitsize — Количество бит, которое занимает значение.

val — Записываемый размер массива.

Возвращаемое значение:

Код ошибки.

4.4 Стандартные шаблоны

4.4.1 Типы данных для представления общей информации

из стандартных шаблонов

4.4.1.1 Измеряемая физическая величина.

Тип: e_LTEDS_INFO_PHYSICAL_MEASURAND			
Описание: Перечисление используются в нескольких стандартных шаблонах			
для указания, какую физическую в	для указания, какую физическую величину измеряет датчик, а также в какой		
размерности заданы и предпочтите.	льно отображ	кать ее значения	
Константа	Значение	Описание	
LTEDS_PHYSMEAS_TEMP_K	0	Температура в Кельвинах	
LTEDS_PHYSMEAS_TEMP_CELSIUS	1	Температура в градусах Цельсия (K - 273.15)	
LTEDS_PHYSMEAS_STRAIN	2	Деформация, натяжение (м/м)	
LTEDS_PHYSMEAS_MICROSTRAIN	3	Микродеформация, микронатя- жение	
LTEDS_PHYSMEAS_FORCE_WEIGHT_N	4	Сила или вес в Ньютонах (Н)	
LTEDS_PHYSMEAS_FORCE_WEIGHT_LB	5	Сила или вес в фунтах (4.44822 Ньютонов)	
LTEDS_PHYSMEAS_FORCE_WEIGHT_KGF	6	Сила или вес в кгс (килограмм-сила)	
LTEDS_PHYSMEAS_ACCEL_M_S2	7	Ускорение в м/с ²	
LTEDS_PHYSMEAS_ACCEL_G	8	Ускорение в g (9.80665 м/c^2)	
LTEDS_PHYSMEAS_TORQUE_NM_RADIAN	9	Крутящий момент в Н * м/рад	
LTEDS_PHYSMEAS_TORQUE_NM	10	Крутящий момент в Н * м (без указания радиан в аббревиатуре)	
LTEDS_PHYSMEAS_TORQUE_OZ_IN	11	Крутящий момент в "oz-in" (0.00706155 Н*м)	
LTEDS_PHYSMEAS_PRESSURE_PASCAL	12	Давление в Паскалях	
LTEDS_PHYSMEAS_PRESSURE_PSI	13	Давление в фунтах на квадрат- ный дюйм (6894.757 Паскалей)	
LTEDS_PHYSMEAS_MASS_KG	14	Масса в килограммах	
LTEDS_PHYSMEAS_MASS_G	15	Масса в граммах	
LTEDS_PHYSMEAS_DISTANCE_M	16	Дистанция в метрах	
LTEDS_PHYSMEAS_DISTANCE_MM	17	Дистанция в миллиметрах	
LTEDS_PHYSMEAS_DISTANCE_INCHES	18	Дистанция в дюймах (0.0254 метра)	
LTEDS_PHYSMEAS_VELOCITY_M_S	19	Скорость в метрах в секунду	
LTEDS_PHYSMEAS_VELOCITY_MPH	20	Скорость в милях в час (0.44704 м/с)	
LTEDS_PHYSMEAS_VELOCITY_FPS	21	Скорость в футах в секунду (0.3048 M/c)	
LTEDS_PHYSMEAS_ANGPOS_RADIAN	22	Угол в радианах	

LTEDS_PHYSMEAS_ANGPOS_DEGREES	23	Угол в градусах (0.0174533 ради- ан)
LTEDS_PHYSMEAS_ROT_VEL_RADIAN_S	24	Угловая скорость в радианах в секунду
LTEDS_PHYSMEAS_ROT_VEL_RPM	25	Угловая скорость в оборотах в минуту (0.104720 радиан в секунду)
LTEDS_PHYSMEAS_FREQ_HZ	26	Частота в Гц
LTEDS_PHYSMEAS_CONCENT_KG_M3	27	Плотность в кг/м ³
LTEDS_PHYSMEAS_CONCENT_UNIT_G_L	28	Плотность в г/ π^3 (эквивалентно кг/ π^3)
LTEDS_PHYSMEAS_CONCENT_MOLE_M3	29	Молярная концентрация в моль/м ³
LTEDS_PHYSMEAS_CONCENT_MOLE_L	30	Моль на литр ($1000 * моль/м^3$)
LTEDS_PHYSMEAS_VOL_CONCENT_M3_M3	31	Молярная объемная концентрация в м ³ /м ³
LTEDS_PHYSMEAS_VOL_CONCENT_L_L	32	Молярная объемная концентра- ция в литрах на литр
LTEDS_PHYSMEAS_MASS_FLOW_KG_S	33	Массовый расход в кг/с
LTEDS_PHYSMEAS_VOL_FLOW_M3_S	34	Объемный расход в м ³ /с
LTEDS_PHYSMEAS_VOL_FLOW_M3_HR	35	Объемный расход в м ³ в час
LTEDS_PHYSMEAS_VOL_FLOW_GPM	36	Объемный расход в галлонах в минуту = $6.30902e^{-5}*\text{м}^3/\text{c}$)
LTEDS_PHYSMEAS_VOL_FLOW_CFM	37	Объемный расход в кубических футах в минуту = $4.71947e^{-4} * \text{м}^3/\text{c}$
LTEDS_PHYSMEAS_VOL_FLOW_L_M	38	Объемный расход в литрах в минуту = $1.66667e^{-5} * \text{м}^3/\text{c}$)
LTEDS_PHYSMEAS_REL_HUMIDITY	39	Относительная влажность в $(\kappa \Gamma/M^3)/(\kappa \Gamma/M^3)$
LTEDS_PHYSMEAS_RATIO_PERCENT	40	Безразмерное отношение в процентах
LTEDS_PHYSMEAS_VOLTAGE	41	Напряжение в Вольтах
LTEDS_PHYSMEAS_RMS_VOLTAGE	42	RMS напряжения в Вольтах
LTEDS_PHYSMEAS_CURRENT	43	Сила тока в Амперах
LTEDS_PHYSMEAS_RMS_CURRENT	44	RMS силы тока в Амперах
LTEDS_PHYSMEAS_POWER_WATTS	45	Мощность в Ваттах

4.4.1.2 Тип электрического интерфейса преобразователя

Tuπ: e_LTEDS_INFO_ELECSIGTYPE		
Описание: Данное перечисление определяет общий тип сигналов внешнего		
электрического интерфейса преобр	азователя (б	ез учета внутреннего устрой-
ства).		
Константа	Значение	Описание
LTEDS_INFO_ELECSIGTYPE_VOLTAGE_	0	Датчик с выходом по напряже-
SENSOR		нию
LTEDS_INFO_ELECSIGTYPE_CURRENT_	1	Датчик с выходом по току
SENSOR	1	датчик с выходом по току
LTEDS_INFO_ELECSIGTYPE_	2	Датчик с выходом в виде сопро-
RESISTANCE_SENSOR	2	тивления
LTEDS_INFO_ELECSIGTYPE_BRIDGE_	3	Датчик с выходом в виде моста
SENSOR	3	датчик с выходом в виде моста
LTEDS_INFO_ELECSIGTYPE_LVDT_	4	LVDT датчик
SENSOR	T	вурт дагчик
LTEDS_INFO_ELECSIGTYPE_POTENT_	5	Потенциометрический делитель
VDIV_SENSOR	3	напряжения
LTEDS_INFO_ELECSIGTYPE_PULSE_	6	Датчик с импульсным выходом
SENSOR		датчик с импульсным выходом
LTEDS_INFO_ELECSIGTYPE_VOLTAGE_	7	Источник воздействия, управля-
ACTUATOR	'	емый напряжением

емый напряжением

емый импульсами

емый током

Источник воздействия, управля-

Источник воздействия, управля-

Знак (полярность) выходного сигнала относительно входного 4.4.1.3

8

9

Тип: e_LTEDS_INFO_OUTSIG_SIGN		
Описание: Знак (полярность) вых	ходного сигна	ала относительно входного
Константа Значение Описание		
LTEDS_INFO_OUTSIG_SIGN_POSITIVE	0	Выходной сигнал положительной
LIEDS_INFO_UUISIG_SIGN_FUSIIIVE		полярности (в фазе с входным)
		Выходной сигнал отрицательной
LTEDS_INFO_OUTSIG_SIGN_NEGATIVE	1	полярности (в противофазе с вход-
		ным)

4.4.1.4 Ось измерения датчика

LTEDS_INFO_ELECSIGTYPE_CURRENT_

LTEDS_INFO_ELECSIGTYPE_PULSE_

ACTUATOR

ACTUATOR

Тип: e_LTEDS_INFO_SENS_DIRECTION			
Описание: Ось измерения дат	Описание: Ось измерения датчика		
Константа	Значение	Описание	
LTEDS_INFO_SENS_DIRECTION_X	0	Ось Х	
LTEDS_INFO_SENS_DIRECTION_Y	1	Ось Ү	
LTEDS_INFO_SENS_DIRECTION_Z	2	Ось Z	
LTEDS_INFO_SENS_DIRECTION_NA	3	Нет данных	

4.4.1.5 Метод отображения величин физического сигнала (PV) на значения электрического сигнала (EV)

Тип: e_LTEDS_INFO_MAPMETH			
Описание: Метод отображения в	Описание: Метод отображения величин физического сигнала (PV) на значе-		
ния электрического сигнала (EV)			
Константа	Значение	Описание	
ITEDS INCO MADMETH ITHEAD	0	Линейное отображение: $PV = m *$	
LTEDS_INFO_MAPMETH_LINEAR		EV + b	
I TEDG THEO MADMETH INVEDGE 4	4	Инверсное линейное отображение	
LTEDS_INFO_MAPMETH_INVERSE_1	1	типа 1: $PV = m/(EV + b)$	
I TEDS THES MADMETH INVERSE S	2	Инверсное линейное отображение	
LTEDS_INFO_MAPMETH_INVERSE_2		типа 2: $PV = b + m/EV$	
I MED G THEO MADMEMU THURDON O	3	Инверсное линейное отображение	
LTEDS_INFO_MAPMETH_INVERSE_3		типа 3: $PV = 1/(b + m/EV)$	
LTEDS_INFO_MAPMETH_THERMOCOUPLE	4	Отображение для термопары	
LTEDS_INFO_MAPMETH_THERMISTOR	5	Отображение для термистора	
I MEDG THEO MADMENT DED	6	Отображение для термосопротив-	
LTEDS_INFO_MAPMETH_RTD		ления	
LTEDS_INFO_MAPMETH_BRIDGE	7	Отображение для моста (с исполь-	
		зованием свойств тензодатчика)	

4.4.1.6 Тип напряжения питания или возбуждения.

Тип: e_LTEDS_INFO_EXCITE_TYPE		
Описание: Перечисление определя	ет тип напря:	жения питания или возбужде-
ния и определяет, как интерпретиро	овать заданні	ые уровни, например в струк-
Type TLTEDS_INFO_EXCITATION	N_LEVELS.	
Константа	Значение	Описание
LTEDS_INFO_EXCITETYPE_DC	0	Питание постоянным однополяр-
LIEDS_INFO_EXCITETIFE_DC	0	ным уровнем.
		Питание постоянным двуполяр-
	1	ным уровнем, т.е. требуется по-
LTEDS_INFO_REXCITETYPE_BIPOLAR_DC		дача положительного и отрица-
		тельного постоянного уровня за-
		данной величины.
I TEDG INEO EVOLTETADE AC	0	Переменное питание. Уровни
LTEDS_INFO_EXCITETYPE_AC	2	указываются в RMS.

4.4.1.7 Базовая информация о выполнении калибровки

Тип: TLTEI	DS_INFO_BASE_CAL		
Описание:	Описание: Структура содержит информацию о последней проведенной калибров-		
ке и периоде	е между их проведени	ями. Входит в большинство стандартных шабло-	
нов, описыва	нов, описывающих датчик.		
Поле	Тип	Описание поля	
Date	TLTEDS_INFO_DATE	Дата проведения калибровки	
PeriodDays	WORD	Период между проведением калибровки в днях	

		Инициалы проводящего калибровку. З заглав-
Initials	CHAR [4]	ные английские буквы с завершающим нулевым
		символом

4.4.1.8 Информация о диапазоне физических величин, измеряемых датчиком

Tuπ: TLTEDS_INFO_PHYSMEAS_RANGE

Описание: Структура содержит информацию, какую физическую величину измеряет датчик, а также пределы рабочего диапазона измеряемых величин. Для датчиков с линейной характеристикой данный диапазон вместе с диапазоном электрических величин (TLTEDS_INFO_ELECTRICAL_RANGE) может определять коэффициент преобразования (чувствительность) датчика.

Входит в состав многих стандартных шаблонов.

Поле	Тип	Описание поля
Measurand	ВҮТЕ	Измеряемая физическая величина и единицы ее измерения. Значение из e_LTEDS_INFO_PHYSICAL_MEASURAND.
MinValue	double	Минимальное измеряемое значение в единицах, определяемых Units.
MaxValue	double	Максимальное измеряемое значение в единицах, определяемых Units.

4.4.1.9 Информация о диапазоне электрических значений на выходе датчика

Тип: TLTEDS_INFO_ELECTRICAL_RANGE

Описание: Структура определяет пределы электрических выходных сигналов датчика. Для датчиков с линейной характеристикой данный диапазон вместе с диапазоном физических величин (TLTEDS_INFO_PHYSMEAS_RANGE) может определять коэффициент преобразования (чувствительность) датчика.

Входит в состав многих стандартных шаблонов.

Поле	Тип	Описание поля
PrecType	ВУТЕ	Данное поле определяет, каким способом и с какой точностью было закодировано значение в TEDS. Набор кодов зависит от типа шаблона.
MinValue	double	Минимальное значение выходного электрического сигнала.
MaxValue	double	Максимальное значение выходного электрического сигнала.

4.4.1.10 Информация о уровнях напряжении возбуждения или питания датчика

Тип: TLTEDS	Tuπ: TLTEDS_INFO_EXCITATION_LEVELS		
Описание: Ил	Описание: Информация о уровнях напряжении возбуждения или питания датчика		
Поле	Тип	Описание поля	
NominalValue	double	Номинальное значение в Вольтах	
MinValue	double	Минимальное значение в Вольтах	
MaxValue	double	Максимально значение в Вольтах	

4.4.2 Шаблон Accelerometer/Force transducer (25)

4.4.2.1 Тип преобразователя для шаблона акселерометра/датчика силы

Тип: e_LTEDS_INFO_ACCF_TRANS_TYPE		
Описание: Тип преобразователя для шаблона акселерометра/датчика силы		
Константа Значение Описание		
LTEDS_INFO_ACCF_TRANS_TYPE_ACC 0 Aкселерометр		
LTEDS_INFO_ACCF_TRANS_TYPE_FORCE 1 Датчик силы		

4.4.2.2 Настройки чувствительности по умолчанию

Тип: e_LTEDS_INFO_ACCF_DEFSENS		
Описание: Настройки чувствительности по умолчанию		
Константа Значение Описание		
LTEDS_INFO_ACCF_DEFSENS_NO О Пассивный режим		
LTEDS_INFO_ACCF_DEFSENS_LOW 1 Низкая чувствительность		
LTEDS_INFO_ACCF_DEFSENS_HIGH 2 Высокая чувствительность		

4.4.2.3 Параметры одного варианта чувствительности акселерометра/датчика силы

Тип: TLTE	Тип: TLTEDS_INFO_ACCF_SENS_HP		
Описание:	Описание: Параметры одного варианта чувствительности акселерометра/датчика		
силы			
Поле	Тип	Описание поля	
Sens	double	Чувствительность преобразователя	
	Частота среза ФВЧ по уровню -3dB, определяющего		
Fhp	double звено передаточной характеристики как		
$H(f, F_{hp}) = 1 + \frac{i*f}{F_{hp}}.$			

4.4.2.4 Параметры чувствительности акселерометра/датчика силы при программном управлении

Tuπ: TLTEDS_INFO_ACCF_PROG_SENS			
Описание: Парамет	Описание: Параметры чувствительности акселерометра/датчика силы при про-		
граммном управлени	и		
Поле	Тип	Описание поля	
		Значение установленной чув-	
DefaultSens	BYTE	ствительности по умолканию.	
Delaultsens	DIIE	Значение из e_LTEDS_INFO_	
		ACCF_DEFSENS.	
		Поддерживает ли датчик пас-	
	BOOLEAN	сивный режим, в котором он	
 SupportPassiveMode		не передает выходной сиг-	
		нал, что позволяет подклю-	
		чить несколько мультиплекси-	
		рованных датчиков на один ка-	
		нал.	
Low	TLTEDS_INFO_ACCF_SENS_HP	Параметры при выбранной	
LOW	ILIEDS_INFO_ACCF_SENS_HP	низкой чувствительности.	
Uimh	TLTEDS_INFO_ACCF_SENS_HP	Параметры при выбранной вы-	
High	ILIEDS_INTO_ACCT_SENS_HP	сокой чувствительности.	

4.4.2.5 Параметры измерения физической величины, специфичные для датчика силы

Тип: TLTEDS_INFO_ACCF_FORCE			
Описание: Пара	Описание: Параметры измерения физической величины, специфичные для дат-		
чика силы			
Поле	Тип	Описание поля	
Stiffness	double	Жесткость в Ньютонах на метр.	
MassBelow	double	Масса ниже чувствительного элемента в грам-	
Hassbelow	double	Max.	
		Коррекция фазы в градусах, необходимая для	
PhaseCorrection	doublo	компенсации сдвига на опорной частоте. Ис-	
Final ecollection double		пользуется только при поддержке программ-	
ного управления чувствительностью.			

4.4.2.6 Параметры измерения физической величины акселерометром/датчиком силы

Тип: TLTEDS_INFO_ACCF_MEAS			
Описание: Параметры измерения физической величины акселеромет-			
ром/датчиком ст	илы		
Поле	Тип	Описание поля	
TransducerType	ВУТЕ	Тип преобразователя из e_LTEDS_	
Transducer Type	DIIL	INFO_ACCF_TRANS_TYPE	
		Признак, поддерживает ли датчик	
HasProgrSens	BOOLEAN	программное управление чувстви-	
		тельностью	
		Фиксированные параметры чув-	
SensInfo	TLTEDS_INFO_ACCF_SENS_HP	ствительности (если HasProgrSens	
		имеет значение "ложь")	
		Параметры чувствительности при	
ProgrSensInfo	TLTEDS_INFO_ACCF_PROG_	программном управлении (если	
110g1bcnsinio	SENS	HasProgrSens имеет значение	
		"истина")	
		Параметры, специфичные для дат-	
Force	TLTEDS_INFO_ACCF_FORCE	чика силы (для акселерометра не	
		имеют значения)	
SensDirection	ВУТЕ	Ось измерения датчика. Значение	
penspit ac cion	DIII	из e_LTEDS_INFO_SENS_DIRECTION	
Weight	double	Вес датчика в граммах	

4.4.2.7 Параметры электрического интерфейса акселерометра/датчика силы

Тип: TLTEDS_INFO_ACCF_ELEC			
Описание:	Параметры элект	рического интерфейса акселерометра/датчика силы	
Поле	Тип	Описание поля	
SigType	ВҮТЕ	Тип сигналов электрического интерфейса. Всегда равно LTEDS_INFO_ELECSIGTYPE_VOLTAGE_SENSOR для данного шаблона	
AcCoupling	BOOLEAN	Признак, требуется ли отсечка постоянной составляющей при измерении выходного сигнала. Всегда истина для данного шаблона.	
MapMeth	ВҮТЕ	Метод отображения физической величины на электрическую. Всегда равен LTEDS_INFO_MAPMETH_LINEAR для данного шаблона.	
Sign	ВУТЕ	Полярность выходного сигнала. Значение из e_ LTEDS_INFO_OUTSIG_SIGN	

4.4.2.8 Параметры передаточной функции акселерометра/датчика силы

Tuπ: TLTEDS_INFO_ACCF_TF			
Описание: Т	Описание: Параметры передаточной функции акселерометра/датчика силы		
Поле	Тип	Описание поля	
		Определена ли переходная характеристика в шаб-	
IsSpecified	BOOLEAN	лоне. Если ложь, то остальные поля не имеют зна-	
		чения	
		Частота среза ФВЧ по уроню -3dB, определяющего	
Flp	double	звено передаточной характеристики как	
		$H(f, F_{lp}) = \frac{1}{1 + \frac{i * f}{F_{lp}}}.$	
		Резонансная частота для комплексного полюса,	
		определяющего звено передаточной характеристи-	
Fpres	double	ки как	
		$H(f, F_{pres}, Q_p) = \frac{1}{1 + \frac{i*f}{Q_n * F_{pres}} + (\frac{i*f}{F_{pres}})^2}.$	
		Значение Q_p берется из параметра \mathbb{Q}_p .	
Qр	double	Добротность для комплексного полюса. Использу-	
МЪ	double	ется в формуле из описания параметра Fpres .	
		Относительный наклон АЧХ в процентах на	
AmpSlope	double	декаду. Падение описывается по формуле $H(f,a,F_{ref})=(\frac{i*f}{F_{ref}})^{\frac{a}{\ln(10)}},$ где данное поле за-	
ишроторе	double	$H(f,a,F_{ref}) = (rac{\imath * f}{F_{ref}})^{\overline{ln(10)}}$, где данное поле за-	
		дает значение а.	
		Температурный коэффициент, описывающий влия-	
TempCoef	double	ние температуры на передаточную характеристику	
Tempodel double		по формуле	
		H(T) = (1 + TempCoef * (T - RefTemp))	

4.4.2.9 Информация о калибровке акселерометра/датчика силы

Тип: TLTEDS_INFO_ACCF_CALINFO		
Описание:	Информация о калибровке	е акселерометра/датчика силы
Поле	Тип	Описание поля
		Значение частоты в Гц, на которой измере-
RefFreq	double	на чувствительность датчика и относитель-
Reilied	double	но которой может задаваться передаточная
	характеристика	
		Значение температуры в градусах Цель-
		сия, при которой измерена чувствитель-
RefTemp double	ность датчика и относительно которой мо-	
		жет задаваться температурный коэффици-
		ент изменения
Base	TLTEDS_INFO_BASE_CAL	Базовая информация о времени проведе-
Dase	TETEDS_INFO_BASE_CAL	ния калибровки

4.4.2.10 Информация о акселерометре/датчике силы

Тип: TLTEDS_INFO_TMPLT_ACCFORCE		
		цию о датчике, которая соответству-
		LTEDS_STD_TEMPLATE_ID_ACCFORCE.
Поле Тип Описание поля		
Meas	TLTEDS_INFO_ACCF_MEAS	Свойства измерения физической
meas ILIEDS_INFU_ACCF_MEAS	величины	
Floogianu+	TLTEDS_INFO_ACCF_ELEC	Свойства электрического интер-
ElecSigOut	TLTEDS_INFU_ACCF_ELEC	фейса
TransfFunc	TLTEDS_INFO_ACCF_TF	Свойства передаточной функция
CalInfo	TLTEDS_INFO_ACCF_CALINFO	Информация о калибровке
MeasLocationID WORD		Пользовательский идентификатор
		места измерения.

4.4.2.11 Извлечение информации о акселерометре/датчике силы из данных TEDS.

Формат: INT LTEDS_GetTmpltInfoAccForce (TLTEDS_DECODE_CONTEXT *ctx, TLTEDS_INFO_TMPLT_ACCFORCE *info)

Описание:

Функция позволяет получить из TEDS информацию, соответствующую стандартному шаблону с идентификатором LTEDS_STD_TEMPLATE_ID_ACCFORCE.

Информация возвращается в виде структуры типа TLTEDS_INFO_TMPLT_ACCFORCE.

Параметры:

 \mathbf{ctx} — Контекст разбора данных TEDS.

info — Структура, в которой возвращается полученная информация.

Возвращаемое значение:

Код ошибки.

4.4.2.12 Запись информации о акселерометре/датчике силы в данные TEDS.

Φορματ: INT LTEDS_PutTmpltInfoAccForce (TLTEDS_ENCODE_CONTEXT *ctx, const TLTEDS_INFO_TMPLT_ACCFORCE *info)

Описание:

Функция позволяет закодировать в TEDS информацию, соответствующую стандартному шаблону с идентификатором LTEDS_STD_TEMPLATE_ID_ACCFORCE.

Параметры:

ctx — Контекст кодирования данных TEDS.

info — Структура, содержащая записываемую информации.

Возвращаемое значение:

Код ошибки.

4.4.3 Шаблон High Level Voltage (30)

4.4.3.1 Способ кодирования диапазона электрической величины датчика с выходом по напряжению

Тип: e_LTEDS_INFO_HLV_ELEC_PRECTYPE		
Описание: Способ кодирования диапазона электрической величины датчика		
с выходом по напряжению		
Константа	Значение	Описание
LTEDS_INFO_HLV_ELEC_PREC_STD_O_	0	Стандартное фиксированное зна-
10V	0	чение пределов 0-10 Вольт
LTEDS_INFO_HLV_ELEC_PREC_STD_	1	Стандартное фиксированное зна-
PM10V	1	чение пределов ±10 Вольт.
LTEDS_INFO_HLV_ELEC_PREC_2OMV 2		Значение закодировано в виде це-
LIEDS_INFO_HLV_ELEC_PREC_ZOMV	2	лого числа с шагом 20 мВ.
Значение закодировано как вег		
LTEDS_INFO_HLV_ELEC_PREC_FULL	3	ственное число.

4.4.3.2 Информация об электрических характеристиках выходного интерфейса датчика с выходом по напряжению

Tuπ: TLTEDS_INFO_HLV_ELECTRICAL			
Описание: Инфо	Описание: Информация об электрических характеристиках выходного интерфей-		
са датчика с выхо	одом по напряжению		
Поле	Тип	Описание поля	
SigType	ВҮТЕ	Tun сигналов электрического интерфейса. Всегда равно LTEDS_INFO_ELECSIGTYPE_VOLTAGE_SENSOR для данного шаблона	
Range	TLTEDS_INFO_ELECTRICAL_	Диапазон выходного электриче-	
Italige	RANGE	ского сигнала.	
MapMeth	ВҮТЕ	Метод отображения физической величины на электрическую. Всегда равен LTEDS_INFO_MAPMETH_LINEAR для данного шаблона.	
AcCoupling	BOOLEAN	Признак, требуется ли отсечка постоянной составляющей при измерении выходного сигнала.	
OutputImpedance	double	Выходное сопротивление датчика при номинальной частоте и питании в Омах.	

		Время отклика в секундах. Опре-
		деляет частоту, с которой может
		меняться выходной сигнал. Свой-
		ство предназначено для описания
ResponseTime	double	полосы выходного сигнала и не
		обязательно соответствует време-
		ни задержки изменения электри-
		ческого сигнала относительно фи-
		зического.

4.4.3.3 Информация о питании датчика с выходом по напряжению

Tuπ: TLTEDS_INFO_HLV_POWSUPPLY			
Описание: І	Описание: Информация о питании датчика с выходом по напряжению		
Поле	Тип	Описание поля	
		Признак, требуется ли датчику от-	
IsRequired	BOOLEAN	дельное питание. Если нет, то осталь-	
		ные поля не имеют значения.	
Tuno	BYTF.	Тип требуемого питания. Значение из	
Туре	DIIE	e_LTEDS_INFO_EXCITE_TYPE.	
Levels	TLTEDS_INFO_EXCITATION_	Уровни напряжения питания датчика.	
Levels	LEVELS		
		Требуемая сила тока (максимальный	
CurrentDraw	double	потребляемый ток) для источника пи-	
		тания при номинальном уровне и нор-	
		мальных условиях.	

4.4.3.4 Информация о датчике с выходом по напряжению

Tuπ: TLTEDS_INFO_TMPLT_HLVOUT				
_	Описание: Структура содержит всю информацию о датчике, которая соответ-			
ствует стандарт	ному шаблону с идентифика	TOPOM LTEDS_STD_TEMPLATE_ID_HL_		
VOLTAGE_OUTPUT.				
Поле	Поле Тип Описание поля			
Meas	TLTEDS_INFO_PHYSMEAS_	Измеряемая физическая величина		
Meas	RANGE	и рабочий диапазон.		
ElecSigOut	TLTEDS_INFO_HLV_	Параметры выходного электриче-		
Fiecgigonic	ELECTRICAL	ского сигнала.		
PowerSupply	TLTEDS_INFO_HLV_	Параметры напряжения питания		
rowersuppry	POWSUPPLY	(если требуется).		
CalInfo	TITEDS INCO DAGE CAL	Информация о проведении калиб-		
Calinio	TLTEDS_INFO_BASE_CAL	ровки.		
MeasLocationID	WORD	Пользовательский идентификатор		
Meastocationin	MOTED	места измерения.		

4.4.3.5 Извлечение информации о датчике с выходом по напряжению из данных TEDS.

ΦορΜατ: INT LTEDS_GetTmpltInfoHLVOut (TLTEDS_DECODE_CONTEXT *ctx, TLTEDS_INFO_TMPLT_HLVOUT *info)

Описание:

Функция позволяет получить из TEDS информацию, соответствующую стандартному шаблону с идентификатором LTEDS_STD_TEMPLATE_ID_HL_VOLTAGE_OUTPUT.

Информация возвращается в виде структуры типа TLTEDS_INFO_TMPLT_ HLVOUT.

Параметры:

 \mathbf{ctx} — Контекст разбора данных TEDS.

info — Структура, в которой возвращается полученная информация.

Возвращаемое значение:

Код ошибки.

4.4.3.6 Запись информации о датчике с выходом по напряжению в данные TEDS.

Φορματ: INT LTEDS_PutTmpltInfoHLVOut (TLTEDS_ENCODE_CONTEXT *ctx, const TLTEDS_INFO_TMPLT_HLVOUT *info)

Описание:

Функция позволяет закодировать в TEDS информацию, соответствующую стандартному шаблону с идентификатором LTEDS_STD_TEMPLATE_ID_HL_VOLTAGE_ OUTPUT.

Параметры:

ctx — Контекст кодирования данных TEDS.

info — Структура, содержащая записываемую информации.

Возвращаемое значение:

Код ошибки.

4.4.4 Шаблон Bridge Sensors (33)

4.4.4.1 Тип моста

Тип: e_LTEDS_INFO_BRIDGE_TYPE			
Описание: Тип моста			
Константа	Значение	Описание	
LTEDS_INFO_BRIDGE_TYPE_QUARTER	0	Четвертьмост	
LTEDS_INFO_BRIDGE_TYPE_HALF	1	Полумост	
LTEDS_INFO_BRIDGE_TYPE_FULL	2	Полный мост	

4.4.4.2 Способ кодирования диапазона электрической величины для шаблона мостового датчика

Тип: e_LTEDS_INFO_BRIDGE_ELEC_PRECTYPE			
Описание: Способ кодирования диапазона электрической величины для шаб-			
лона мостового датчика			
Константа	Значение	Описание	
LTEDS_INFO_BRIDGE_ELEC_PREC_11BIT	0	От -1 до $+1$ с шагом 0.001	
LTEDS_INFO_BRIDGE_ELEC_PREC_19BIT	1	От -6.55E-3 до 6.55E-3 с шагом 25E-9	
		Напряжение закодировано чис-	
LTEDS_INFO_BRIDGE_ELEC_PREC_FULL	2	лом с плавающей точкой	

4.4.4.3 Информация о электрических характеристиках выходного интерфейса датчика с выходом в виде моста

Тип: TLTEDS_INFO_BRIDGE_ELECTRICAL		
Описание: Информация о электрических характеристиках выходного интерфейса		
датчика с выходом в виде моста		
Поле	Тип	Описание поля
SigType	ВҮТЕ	Tun сигналов электрического интерфейса. Всегда равно LTEDS_INFO_ELECSIGTYPE_BRIDGE_SENSOR для данного шаблона
Range	TLTEDS_INFO_ELECTRICAL_ RANGE	Диапазон выходного электриче- ского сигнала.
MapMeth	ВҮТЕ	Метод отображения физической величины на электрическую. Всегда равен LTEDS_INFO_MAPMETH_LINEAR для данного шаблона.
BridgeType	ВУТЕ	Тип моста. Значение из e_LTEDS_ INFO_BRIDGE_TYPE.
BridgeImpedance	double	Выходное сопротивление каждого элемента моста в Омах.
ResponseTime	double	Время отклика в секундах. Значение аалогично одноименному полю из TLTEDS_INFO_HLV_ELECTRICAL.

4.4.4.4 Информация шаблона мостового датчика.

Tuπ: TLTEDS_INFO_TMPLT_BRIDGE

Oписание: Структура содержит информацию из шаблона с идентификатором LTEDS_STD_TEMPLATE_ID_BRIDGE_SENSOR, описывающего свойства мостового датчика

Для получения используется функция LTEDS_GetTmpltInfoBridge().

Поле	Тип	Описание поля
Meas	TLTEDS_INFO_PHYSMEAS_	Информация о измеряемой физи-
rieas	RANGE	ческой величине.
Floogianu+	TLTEDS_INFO_BRIDGE_	Информация о выходном элек-
ElecSigOut	ELECTRICAL	трическом интерфейсе датчика.
ExcitationLevels	TLTEDS_INFO_EXCITATION_	Информация о напряжении воз-
ExcitationLevels	LEVELS	буждения (питания) моста.
CalInfo	TLTEDS_INFO_BASE_CAL	Информация о проведении ка-
Callillo	TLIEDS_INFO_BASE_CAL	либровки.
MeasLocationID	WORD	Пользовательский идентифика-
MeasLocationid	WORD	тор места измерения.

4.4.4.5 Извлечение информации о мостовом датчике из TEDS данных

Формат: INT LTEDS_GetTmpltInfoBridge (TLTEDS_DECODE_CONTEXT *ctx, TLTEDS_INFO_TMPLT_BRIDGE *info)

Описание:

Функция позволяет получить из TEDS информацию, которая соответствует шаблону с идентификатором LTEDS_STD_TEMPLATE_ID_BRIDGE_SENSOR и описывает свойства датчика с выходом в виде моста сопротивлений.

Информация возвращается в виде структуры типа TLTEDS_INFO_TMPLT_ BRIDGE.

Параметры:

ctx — Контекст разбора данных TEDS.

info — Структура, в которой возвращается полученная информация.

Возвращаемое значение:

Код ошибки.

4.4.4.6 Запись информации о мостовом датчике в данные TEDS.

Формат: INT LTEDS_PutTmpltInfoBridge (TLTEDS_ENCODE_CONTEXT *ctx, const TLTEDS_INFO_TMPLT_BRIDGE *info)

Описание:

Функция позволяет закодировать в TEDS информацию, соответствующую шаблону с идентификатором LTEDS_STD_TEMPLATE_ID_BRIDGE_SENSOR.

Параметры:

ctx — Контекст кодирования данных TEDS.

info — Структура, содержащая записываемую информацию.

Возвращаемое значение:

Код ошибки.

4.4.5 Шаблон Calibration Table (40)

4.4.5.1 Константы и макроопределения

Константа	Значение	Описание
LTEDS_INFO_CALTABLE_DATASET_MAX	127	Максимальное количество элемен-
LIEDS_INFO_CALIABLE_DATASEI_MAX	121	тов в таблице калибровки

4.4.5.2 Домен параметра для задания точек калибровки

Тип: e_LTEDS_CAL_DOMAIN			
Описание: Домен параметра для задания точек калибровки			
Константа	Значение	Описание	
LTEDS_INFO_CAL_DOMAIN_ELECTRICAL	0	Значение электрической величи-	
LIEDS_INFO_CAL_DOMAIN_ELECTRICAL		ны	
LTEDS_INFO_CAL_DOMAIN_PHYSICAL	1	Значение физической величины	

4.4.5.3 Точка из таблицы калибровки

Тип: TLTEDS_INFO_CALTABLE_DATASET			
Описание: Структура, содержащая набор из двух значений, определяющих от-			
клонение калибр	клонение калибровочного значения от номинального в указанной точке.		
Поле	Тип Описание поля		
DomainValue	double	Значение величины (физической или электрической, в зависимости от выбранного домена), для которой указано калибровочное значение. Задается в процентах от полного диапазона.	
RangeDeviation	double	Отклонение от номинальной линейной передаточной функции в процентах от шкалы.	

4.4.5.4 Информация шаблона таблицы калибровки

Тип: TLTEDS_INFO_TMPLT_CAL_TABLE

Описание: Структура содержит информацию из шаблона с идентификатором LTEDS_STD_TEMPLATE_ID_CAL_TABLE.

В структуре представлены данные калибровочной таблицы, описывающей передаточную функцию преобразования между электрическими и физическими величинами. Каждая точка таблицы указывает для определенного значения величины отклонение от номинальной линейной характеристики в процентах шкалы.

Для получения используется функция LTEDS_GetTmpltInfoCalTable().

Поле	Тип	Описание поля
	ВҮТЕ	Домен, определяющий какая величи-
Domain		на используется для задания точек,
Domain		где производилась калибровка. Зна-
		чение из e_LTEDS_CAL_DOMAIN.
		Количество точек калибровки. Опре-
DataSetCount	BYTE	деляет количество действительных
		элементов в массиве DataSets.

	TLTEDS_INFO_CALTABLE_	Набор точек калибровки. Действи-
DataSets	DATASET [LTEDS_INFO_	тельны первые DataSetCount элемен-
	CALTABLE_DATASET_MAX]	тов.

4.4.5.5 Извлечение калибровочной таблицы из данных TEDS.

Формат: INT LTEDS_GetTmpltInfoCalTable (TLTEDS_DECODE_CONTEXT *ctx, TLTEDS_INFO_TMPLT_CAL_TABLE *info)

Описание:

Функция позволяет получить из TEDS информацию, соответствующую стандартному шаблону с идентификатором LTEDS_STD_TEMPLATE_ID_CAL_TABLE.

Информация возвращается в виде структуры типа $TLTEDS_INFO_TMPLT_CAL_TABLE$

Параметры:

ctx — Контекст разбора данных TEDS.

info — Структура, в которой возвращается полученная информация.

Возвращаемое значение:

Код ошибки.

4.4.5.6 Запись информации о мостовом датчике в данные TEDS.

Φορματ: INT LTEDS_PutTmpltInfoCalTable (TLTEDS_ENCODE_CONTEXT *ctx, const TLTEDS_INFO_TMPLT_CAL_TABLE *info)

Описание:

Функция позволяет закодировать в TEDS информацию, соответствующую шаблону с идентификатором LTEDS_STD_TEMPLATE_ID_CAL_TABLE.

Параметры:

ctx — Контекст кодирования данных TEDS.

info — Структура, содержащая записываемую информацию.

Возвращаемое значение:

Код ошибки.

4.5 Данные производителя Л Кард

4.5.1 Типы и определения, специфичные для производителя "Л Кард"

4.5.1.1 Константы и макроопределения

Константа	Значение	Описание
LTEDS_LCARD_TEMPLATE_ID_BITSIZE	8	Размер в битах идентификатора шаблона компании ООО "Л Кард"
LTEDS_LCARD_MANUFACTURER_ID	2614	Идентификатор производителя, соответствующий компании ООО "Л Кард"

4.5.1.2 Идентификаторы моделей преобразователей компании "Л Кард" в TEDS.

Тип: e_LTEDS_LCARD_MODEL_ID

Описание: Данное поле определяет, какому типу преобразователя "Л Кард" соответствуют данные TEDS. В случае многоканальных преобразователей (как LPW25-U-2-230) введены отдельные идентификаторы модели для каждого канала для возможности определения, какой именно канал преобразователя используется.

Константа	Значение	Описание
LTEDS_LCARD_MODEL_ID_LPW25_U_2_	2500	Первый канал преобразователя
230_CH1	2500	LPW25-U-2-230
LTEDS_LCARD_MODEL_ID_LPW25_U_2_	2501	Второй канал преобразователя
230_CH2	2501	LPW25-U-2-230
LTEDS_LCARD_MODEL_ID_LPW25_I_1_5_	2502	Преобразователь LPW25-I-1-5-1
1	2502	преобразователь пт w 25-1-1-5-1
LTEDS_LCARD_MODEL_ID_LPW25_I_1_5_	2503	Преобразователь LPW25-I-1-5-2
2	2505	преобразователь пт w 25-1-1-5-2

4.5.1.3 Идентификаторы шаблонов производителя "Л Кард"

Tuπ: e_LTEDS_LCARD_TEMPLATE_ID			
Описание: Идентификаторы шаблонов производителя "Л Кард"			
Константа	Значение	Описание	
		Таблица зависимости выходного	
LTEDS_LCARD_TEMPLATE_ID_CUR_IMP_		сопротивления датчика от тока	
TABLE	100	питания датчика (раздел Шаб-	
		лон Current Impendance Table	
		(1)).	
		Таблица с фазо частотной ха-	
		рактеристикой модуля. Указыва-	
LTEDS_LCARD_TEMPLATE_ID_PHASE_ FREQ_TABLE	101	ет задержку фазы относитель-	
	101	но линейной для разных частот	
		(раздел Шаблон Phase Frequency	
		Table (2)).	

4.5.1.4 Проверка, относится ли данный идентификатор производителя к компании "Л Кард".

Формат: BOOL LTEDS_IsLCardManufacturerID (WORD manid)

Описание:

Функция принимает значение кода ManufacturerID из TEDS данных и проверяет, относится ли данный идентификатор к компании "Л Кард".

manid Идендификтор производителя, который нужно проверить.

Возвращаемое значение:

Функция возвращает TRUE, если идентификатор относится к компании "Л Кард", иначе — FALSE.

4.5.2 Шаблон Current Impendance Table (1)

4.5.2.1 Константы и макроопределения

Константа	Значение	Описание
LTEDS_LCARD_INFO_CUR_IMP_DATASET_ MAX	127	Максимальное количество элементов в таблице соответствия между током питания и выходным сопротивлением

4.5.2.2 Соответствие сопротивления току

Тип: TLTEDS_LCARD_INFO_CUR_IMP_DATASET		
Описание: Структура задает соответствие между определенным током питания		
преобразователя и его выходным сопротивлением.		
Поле	Тип	Описание поля
SourceCurrent	double	Значение источника тока в Амперах
OutputImpedance	double	Значение выходного сопротивления в Омах

4.5.2.3 Информация зависимости выходного сопротивления датчика от тока питания датчика

Тип: TLTEDS_LCARD_INFO_TMPLT_CUR_IMP

Oписание: Структура содержит информацию из шаблона "Л Кард" с идентификатором LTEDS_LCARD_TEMPLATE_ID_CUR_IMP_TABLE.
В структуре содержатся значения выходного сопротивления преобразователей для различных значений тока питания преобразователя.

Для получения используется функция LTEDS_GetLCardTmpltInfoCurImpTable().

r 1 •	0 10	
Поле	Тип	Описание поля
D	BYTE	Тип формата (поддерживается толь-
PrecFormat	CFORMAL BILE	ко 0)
DataSatCount	un+ DYTE	Количество точек соответствия со-
DataSetCount BYTE	BILE	противления и тока питания.
	TLTEDS_LCARD_INFO_CUR_IMP_	Набор точек соответствия сопротив-
DataSets	DATASET [LTEDS_LCARD_INFO_	ления и тока питания. Действитель-
	CUR_IMP_DATASET_MAX]	ны первые DataSetCount элементов.

4.5.2.4 Извлечение таблицы соответствия сопротивления току из данных TEDS.

ΦopMat: INT LTEDS_GetLCardTmpltInfoCurImpTable (TLTEDS_DECODE_CONTEXT *ctx, TLTEDS_LCARD_INFO_TMPLT_CUR_IMP *info)

Описание:

Функция позволяет получить из TEDS информацию, соответствующую шаблону "Л Кард" с идентификатором LTEDS_LCARD_TEMPLATE_ID_CUR_IMP_TABLE.

Информация возвращается в виде структуры типа TLTEDS_LCARD_INFO_ TMPLT CUR IMP.

Параметры:

ctx — Контекст разбора данных TEDS.

info — Структура, в которой возвращается полученная информация.

Возвращаемое значение:

Код ошибки.

4.5.2.5 Запись таблицы соответствия сопротивления току в данные TEDS.

Φορματ: INT LTEDS_PutLCardTmpltInfoCurImpTable (TLTEDS_ENCODE_CONTEXT *ctx, const TLTEDS_LCARD_INFO_TMPLT_CUR_IMP *info)

Описание:

Функция позволяет закодировать в TEDS информацию, соответствующую шаблону "Л Кард" с идентификатором LTEDS_LCARD_TEMPLATE_ID_CUR_IMP_TABLE.

Параметры:

ctx — Контекст кодирования данных TEDS.

info — Структура, содержащая записываемую информацию.

Возвращаемое значение:

Код ошибки.

4.5.3 Шаблон Phase Frequency Table (2)

4.5.3.1 Константы и макроопределения

Константа	Значение	Описание
LTEDS_LCARD_INFO_PHASE_FREQ_ DATASET_MAX	127	Максимальное количество эле- ментов в таблице фазо частотной характеристики

4.5.3.2 Соответствие смещения фазы частоте

Тип: TLTEDS_LCARD_INFO_PHASE_FREQ_DATASET		
Описание: Структура задает смещение фазы, вносимое преобразователем, для		
заданного значения частоты сигнала.		
Поле	Тип	Описание поля
Frequency	double	Частота сигнала в Гц
PhaseShift	double	Сдвиг фазы в градусах

4.5.3.3 Информация о фазо частотной характеристике преобразователя

Тип: TLTEDS_LCARD_INFO_TMPLT_PHASE_FREQ

Описание: Структура содержит информацию из шаблона "Л Кард" с идентификатором LTEDS_LCARD_TEMPLATE_ID_PHASE_FREQ_TABLE.

В структуре представлен набор точек, определяющих сдвиг фазы, вносимый преобразователем, для указанных значений частот сигнала.

Для получения используется функция LTEDS_GetLCardTmpltInfoPhaseFreqTable().

Поле	Тип	Описание поля
DataSetCount	ВУТЕ	Количество точек соответствия частоты и фазы.
DataSets	TLTEDS_LCARD_INFO_PHASE_ FREQ_DATASET [LTEDS_LCARD_ INFO_PHASE_FREQ_DATASET_ MAX]	Набор точек соответствия частоты и фазы. Действительны первые DataSetCount элементов.

4.5.3.4 Извлечение таблицы с фазо частотной характеристикой из данных TEDS.

Формат: INT LTEDS_GetLCardTmpltInfoPhaseFreqTable

(TLTEDS_DECODE_CONTEXT *ctx, TLTEDS_LCARD_INFO_TMPLT_PHASE_FREQ *info)

Описание:

Функция позволяет получить из TEDS информацию, соответствующую шаблону "Л Кард" с идентификатором LTEDS_LCARD_TEMPLATE_ID_PHASE_FREQ_TABLE.

Информация возвращается в виде структуры типа TLTEDS_LCARD_INFO_TMPLT PHASE FREQ.

Параметры:

ctx — Контекст разбора данных TEDS.

info — Структура, в которой возвращается полученная информация.

Возвращаемое значение:

Код ошибки.

4.5.3.5 Запись таблицы с фазо частотной характеристикой в данные TEDS.

Формат: INT LTEDS_PutLCardTmpltInfoPhaseFreqTable

(TLTEDS_ENCODE_CONTEXT *ctx, const TLTEDS_LCARD_INFO_TMPLT_PHASE_FREQ *info)

Описание:

Функция позволяет закодировать в TEDS информацию, соответствующую шаблону "Л Кард" с идентификатором LTEDS_LCARD_TEMPLATE_ID_PHASE_FREQ_TABLE.

Параметры:

 \mathbf{ctx} — Контекст кодирования данных TEDS.

info — Структура, содержащая записываемую информацию.

Возвращаемое значение:

Код ошибки.