
Programmer manual

DAQ SYSTEMS DESIGN, MANUFACTURING & DISTRIBUTION

http://en.lcard.ru
en@lcard.ru

Revision A3
March 2011

External high-speed module
on the USB 2.0 bus

E20-10

A family of universal modules of the ADC, DAC

http://en.lcard.ru
mailto:en@lcard.ru

L-CARD LLC

117105, Moscow, Varshavskoye shosse, 5, block 4, bld. 2

tel.: (495) 785-95-19
fax: (495) 785-95-14

Internet contacts:

 http://en.lcard.ru

E-Mail:

Sales department: en@lcard.ru
Technical support: en@lcard.ru

E20-10. External high-speed general-purpose module on the USB 2.0 bus.

© Copyright 1989–2011, L-Card LLC. All rights reserved.

http://en.lcard.ru/
mailto:en@lcard.ru
mailto:en@lcard.ru

Contents
1. Introduction .. 4
2. General information ... 5

2.1. What's new? .. 5
2.2. Connecting the E20-10 module to a computer ... 6
2.3. Library Lusbapi .. 7
2.4. Microcontroller module ... 8
2.5. Module loading ... 9
2.6. Possible problems with the module ... 9

3. Used terms and data formats ... 10
3.1. Terms... 10
3.2. Data formats.. 10

4. Description of the Lusbapi library .. 13
4.1. General principles of working with the module ... 13
4.2. Constants ... 16
4.3. Structures .. 22
4.4. General functions ... 26
4.5. Functions for working with ADC .. 30
4.6. Functions for working with the DAC.. 43
4.7. Functions for working with digital lines ... 44
4.8. Functions for working with the user PROM... 45
4.9. Functions for working with service information .. 46

A.1. Constants .. 47
A.2. Structure of the VERSION_INFO_LUSBAPI .. 47
A.3. Structure of the MCU_VERSION_INFO_LUSBAPI .. 47
A.4. Structure of the MODULE_INFO_LUSBAPI .. 48
A.5. Structure of the INTERFACE_INFO_LUSBAPI ... 48
A.6. Structure of the MCU_INFO_LUSBAPI .. 48
A.7. Structure of the PLD_INFO_LUSBAPI .. 48
A.8. Structure of the ADC_INFO_LUSBAPI ... 49
A.9. Structure of the DAC_INFO_LUSBAPI ... 49
A.10. Structure of the DIGITAL_IO_INFO_LUSBAPI .. 49

1. Introduction
 This description is designed for users who intend to develop their own applications in the operating
environment Windows'98 / 2000 / XP / Vista / 7 for working with high-speed modules E20-10 from LLC
"L-Card". It is strongly recommended to review "E20-10. User guide", where you can find detailed
technical information about the module, including function circuit description, injection signal connexion,
external connectors pinning, characteristic fails and many others.
 "L-Card" LLC company supplies USB device drivers, ready dynamic link library Lusbapi with a whole
range of completed samples for the high-speed module E20-10. As the base language, when writing the
Lusbapi library, C ++ was selected, and more specifically, the old, reliable Borland C ++ 5.02.
Moreover, the library itself and all examples are supplied along with the source code, provided with fairly
detailed comments. The standard library Lusbapi includes a variety of functions that help the user to
use all the features incorporated in the E20-10 module.
 The E20-10 module was developed with the main goal to provide reliable high-speed collection of
analog information to the computer. To this end, the standard library Lusbapi contains a range of
functions that allows organizing multi-channel continuous streaming of analog data at ADC frequencies
up to 10 MHz. When collecting analog information, the end user can use a wide range of types of data
entry synchronization. The output of analogue (on DAC) and digital information input / output is realized
only in a single, and therefore relatively slow, mode. We hope that the Lusbapi library described below
will simplify and speed up the writing of your own Windows applications. The entire package of standard
software for working with the E20-10 module in the Windows'98 / 2000 / XP / Vista / 7 is found on the
supplied firmware CD-ROM in the \ USB \ Lusbapi. !!!ATTENTION!!! Further, in the text of
this description, all the directories are indicated relative to it. Also all the regular software can be
downloaded from our website en.lcard.ru from the section "File Library". There, from the "Software
for Windows", you should select the self-extracting archive lusbapiXY.exe, where X.Y denotes
the version number of the software. At the time of this writing, the latest Lusbapi library has version
3.3, and its archive is called lusbapi33.exe.

http://www.lcard.ru/download/e20_10_Users_Guide_en.pdf
http://en.lcard.ru/
http://en.lcard.ru/download/
http://en.lcard.ru/download/
http://en.lcard.ru/download/#libpart2
http://en.lcard.ru/download/#libpart2
http://en.lcard.ru/download/#libpart2
http://www.lcard.ru/download/lusbapi33.exe
http://www.lcard.ru/download/lusbapi33.exe

2. General information

2.1. What's new?
 As a rule, this paragraph will contain only main changes as a hardware and software nature. For more

information, please refer to:
 "E20-10. User Manual";
 "E20-10. Library Lusbapi. Additions and changes log".

2.1.1. Library Lusbapi 3.3
In the Lusbapi library version 3.3, only two minor changes were made, namely:

 E20-10 module is available in two versions (designs):
 with a bandwidth of the input signal equal to 1.25 MHz (basic version);
 with a bandwidth of the input signal equal to 5.0 MHz;

In order to inform the user about the current execution of the module, a new numeric Modification
field was entered in the MODULE_INFO_LUSBAPI structure.

 For the module E20-10 (Rev.'A ') in the function ReadData (), the lower limit and the
multiplicity of the NumberOfWordsToPass request value of the IO_REQUEST_LUSBAPI
structure are corrected. Before these values were equal to 128counts, now it is 256.

http://www.lcard.ru/download/e20_10_Users_Guide_en.pdf

 E20-10 module

2.1.2. Library Lusbapi 3.2
 In early 2008, a new revision of the E20-10 module (Rev.'B ') was started. This modification is the
product of a solid hardware upgrade E20-10 (Rev.'A ').
The Lusbapi library version 3.2 is designed to provide full support for all new functions and properties
that appeared on the E20-10 module (Rev.'B '). Since there are a lot of changes we note only the
following main differences from the previous revision of the module:

• The procedure for calibrating the data from the ADC can now be performed at the FPGA level of
the module;

• Extended range of interframe delay;
• Introduced advanced synchronization capabilities when working with ADC;
• Improved checking the status of the data collection process.

2.2. Connecting the E20-10 module to a computer
 All details of the hardware connection procedure for the E20-10 module to the end user's computer and
the proper installation of the USB drivers can be found in "E20-10. User Manual, § 4 "Instalation and
configuration".
It is worth emphasizing that, starting with version 3.2, the main USB driver file has changed in the
Lusbapi library. Now it is called Ldevusbu.sys instead of Ldevusb.sys. Thus, when upgrading
from older versions of Lusbapi to a newer version 3.2 or higher, the end user should, through the "Device
Manager", switch the E20-10 module to work with the new USB driver.

http://www.lcard.ru/download/e20_10_Users_Guide_en.pdf
http://www.lcard.ru/download/e20_10_Users_Guide_en.pdf

Programmer's Manual. Library Lusbapi 3.3. Rev.A3

2.3. Library Lusbapi
 The regular library Lusbapi is written using the very accessible programming language Borland C ++
5.02. In addition to the E20-10 module, the library also supports modules of the E-154, E14-140 and
E14-440 types. The general view of the Lusbapi library project in the Borland C ++ 5.02 integrated
development environment is shown in the figure below:

 The library itself contains only two exported functions, one of which CreateLInstance () returns a
pointer to the interface of the E20-10 module. Further, using this pointer, you can access all the interface
functions of the standard DLL library (see the source code for the examples). !!!Attention!!! All interface
functions, except for ReadData(), strictly speaking, do not provide thread-safe‖ operation of the library.
Therefore, in order to avoid confusion, in multi-threaded applications, the user must organize himself, if
necessary, correct synchronization of interface function calls in different threads (using, for example,
critical sections, mutexes, etc.).
 The library file Lusbapi.dll includes information about the current version of the DLL. To get
information about this version in your application, you can use the second export function from the
standard library: GetDllVersion(). In addition, to quickly identify the current version of the library can be
using the regular features of Windows. For instance, right-click on the Lusbapi.dll library file in
‗Windows Explorer‘. In the menu that pops up on the monitor screen, select the option ‗Properties',
and then on the resulting panel select the ‗Version 'tab. On this tab in the line ‗File version you can easily
read the current version of the library. It looks something like this:

 E20-10 module

The file of the regular library Lusbapi.dll is located on the corporate CD-ROM in the \ DLL \
BIN directory. Its source texts can be found in the \ DLL \ Source \ Lusbapi directory. Header
files are stored in the \DLL\ Include directory, and import libraries and declaration modules for
various development environments can be found in the \DLL\Lib directory.
 Texts of completed examples of application of interface functions from the standard DLL library for
various application development environments can be found in the following directories:

• \E20-10\Examples\Borland C++ 5.02;
• \E20-10\Examples\Borland C++ Builder 5.0;
• \E20-10\Examples\Borland Delphi 6.0;
• \E20-10\Examples\MicroSoft Visual C++ 6.0.

 For example, to get the ability to call interface functions in a custom project on Borland C ++, you need to
do the following:

• create a project file (for example, for Borland C ++ 5.02, test.ide);
• add the import library file \DLL\Lib\Borland\LUSBAPI.LIB;
• create and add to your project your file with a future program (for example, test.cpp);
• include at the beginning of your file the header file #include "LUSBAPI.H",

containing the interface description of the E20-10 module;
• in principle, using the function GetDllVersion (), it is desirable to compare the version of the

used DLL library with the version of the current software;
• call the CreateLInstance () function to get a pointer to the module interface; in general,

EVERYTHING! Now you can write your program and at any place, using the received
pointer, call the corresponding interface functions from the regular DLL of the library
Lusbapi.dll.

 To fans of the Microsoft Visual C ++ dialect, you can recommend two ways to connect a standard DLL
library to your application:

1. Dynamic load of the Lusbapi library at the application execution stage. For details, see the
source code for the sample from the \E20-10\Examples\MicroSoft Visual C ++
6.0\DynLoad directory.

2. If you are statically building a standard DLL in your project, use the LUSBAPI.LIB import
library file from the \DLL\Lib\MicroSoft directory.

 While working with the E20-10 module in the Borland Delphi environment, it is recommended to use
the LUSBAPI.PAS declaration module located in the \ DLL\Lib\Delphi directory. Also, instead of
the original ad unit, you can fully use the compiled version of LUSBAPI.DCU.

2.4. Microcontroller module
 On the E20-10 module, as a ‗workhorse' a microcontroller (MCU) of AVR Atmega 162 type by Atmel
Corporation is used. The MCU is responsible for the correct functioning of the USB interface of the
module, as well as parses all user commands coming from the computer and specifying the various modes
of operation of the module. A feature of software, which is the basis of the MCU's work, is its two-
component. In other words, as it consists of two parts: the main program (Firmware) and the bootloader
(BootLoader). The proprietary loader, as well as the main program, is loaded to the MCU during the setup
phase of the E20-10 module in "L-Card" LLC and the end user does not have the option of updating it
without a special firmware cable. But at the same time BootLoader provides the possibility of painless
firmware reflashing of the module on the USB bus, which is extremely convenient when upgrading the
main program. The latest version of Firmware MCU can always be downloaded from our website
en.lcard.ru from the section "File Library". There, from the "Firmware and BIOS" subsection, select the

http://www.atmel.com/dyn/products/product_card.asp?part_id=2023
http://www.atmel.com/dyn/products/product_card.asp?part_id=2023
http://www.atmel.com/dyn/products/product_card.asp?part_id=2023
http://www.atmel.com/dyn/products/product_card.asp?part_id=2023
http://www.atmel.com/
http://www.atmel.com/
http://www.atmel.com/
http://www.atmel.com/
http://en.lcard.ru/
http://www.lcard.ru/download/
http://www.lcard.ru/download/
http://www.lcard.ru/download/
http://www.lcard.ru/download/
http://www.lcard.ru/download/#libpart9

Programmer's Manual. Library Lusbapi 3.3. Rev.A3

archive e2010fw_WXa_YZb.zip, where W.X stands for the version number of the main MCU

program for the E20-10 module (Rev.'A '), and Y.Z for the E20-10 module (Rev.'B'). At the time of
writing, this archive is named e2010fw_17a_21b.zip.zip.

2.5. Module loading
As one of the main functional units of the E20-10 module, you can safely call the programmable

logic integrated circuit(FPGA) of the ACEX family (for Rev.'A' module) or Cyclone (for Rev.'B'
module) by Altera Corporation. The main functional purpose of the FPGA is to perform full hardware
control of the streaming input of analog information. Applied FPGA has a so-called downloadable
architecture. Thus, it must be loaded every time after power is applied to the module, and can also be
reloaded already during the operation of the module.
 In the operational software in the directory \DLL\Source\ you can find the files of the firmware

FPGA for various revisions of the module E20-10, namely: E2010.pld — for E20-10
(Rev.'A') module; E2010m.pld — for E20-10 (Rev.'B') module.
 These files are also built in as resources in the library Lusbapi.dll, which has a special

interface function LOAD_MODULE () to correctly load the firmware into the FPGA module. Only after
loading the FPGA you can go directly to the very management of the module, i.e. shift it into various
modes of operation with ADC, DAC, and so on.

2.6. Possible problems with the module
1. Before working with the regular E20-10 module software, in order to avoid unpredictable behavior

of the module, it is highly recommended to install the drivers for the chipset of the motherboard of the
computer used. In particular, this applies to chipsets not from Intel: VIA, SIS, nVidia, AMD+ATI and so
on. Usually these drivers can be found on the company's CD-ROM, which comes with the motherboard.
Also they can be downloaded from the Internet from the manufacturer's website.

2. Computers whose motherboard is based on the chipset from SIS (Silicon Integrated System
Corporation), AMD + ATI (Advanced Micro Devices, Inc.) or nVidia (NVIDIA Corporation), do not
work correctly on Windows'98/2000/XP/Vista/7. This is evident in queries with a large amount of data in
the interface functions ReadData (). For example, if you call this function with the
NumberOfWordsToRead = 1024 * 1024 parameter, the Windows operating system may well, it's called,
hang 'tightly' until the BSOD (Blue Screen Of Death) appears. The solution to this problem lies in the
course of decreasing the value of NumberOfWordsToRead. And the value of NumberOfWordsToRead, in
which everything starts working properly, depends on a specific instance of the computer. So you should
try simply to modify the value of the NumberOfWordsToRead parameter.

http://www.lcard.ru/download/e2010fw17.zip
http://www.lcard.ru/download/e2010fw17.zip
http://www.altera.com/products/devices/acex/acx-index.html
http://www.altera.com/products/devices/cyclone/cyc-index.jsphttp:/www.altera.com/products/devices/acex/acx-index.html
http://www.altera.com/
http://www.altera.com/
http://www.sis.com/
http://www.sis.com/
http://www.sis.com/
http://www.sis.com/
http://ati.amd.com/
http://ati.amd.com/
http://ati.amd.com/
http://www.nvidia.com/
http://www.nvidia.com/
http://www.nvidia.com/

E20-10 module

3. Used terms and data formats

3.1. Terms

Name Meaning

ADCRate ADC frequency, kHz.

InterKadrDelay Interframe delay, mls.

KardRate Count frame frequency, kHz.

Buffer Array of integers of data type SHORT.

ControlTable
A control table containing an integer array with logical channel
numbers. Used by the equipment for organizing a cyclic interrogation of
ADC channels during data collection.

ControlTableLength The size of the control table.

3.2. Data formats

3.2.1. Word formate from the ADC data
 The data coming from the 14 bit A/D converter of the E20-10 module is represented in the format of the
signed integer two byte number from -8192 to 8191. These raw‖ readings from the ADC are
recommended to be adjusted, for example, using the regular (factory) correction coefficients stored in the
module itself and accessible using the regular function GET_MODULE_DESCRIPTION (). The procedure
for correcting the ADC data is possible both at the upper software level and at the FPGA level of the
module, and is described in detail in § 4.5.1. "ADC data correction". The relationship between the
corrected ADC code and the input voltage is given in the table below:

Table 1. Matching the corrected ADC code to the input voltage

Range, В ADC code Voltage, B

±3.0; ±1.0; ±0.3

+8000 +3.0; +1.0; +0.3

0 0

-8000 –3.0; –1.0; –0.3

3.2.2. Word format for DAC data
On the module, at the user's request, a 2-channel 12bit DAC. To output any voltage at the output of the DAC
to the E20-10 module, a 16 bit data word must be transmitted. The format of this data word is given in the
following table:

Programmer's Manual. Library Lusbapi 3.3. Rev.A3

Table 2. Data word format for DAC

Bit number Intended purpose

<11..0> 12-bit DAC code

12

DAC channel
number: ‗0‘ – first
channel; ‗1‘ –

second channel.

<15..13> Is not used

Actually, the code of the DAC itself is recommended to be corrected before sending it to the module.
The correction coefficients are stored in the module and are accessible using the standard function
GET_MODULE_DESCRIPTION(). The procedure for correcting the DAC data is described in detail in §
4.6.1. "ADC data correction". After this procedure, the corrected code sent by the module to the 12-bit
DAC is connected to the voltage set on the external connector in accordance with the following table

Table 3. Correspondence of the corrected DAC code to the output voltage

DAC code Voltage, B

+2047 +5.0

0 0

–2048 –5.0

3.2.3. Logical channel number
 On the E20-10 module, to control the operation of the analog input stage, a parameter is defined, such as
a 16-bit logical channel number. It is the array of logical channel numbers that forms the ControlTable
control table that specifies the cyclic sequence of the ADC's operation when data is collected. For the
E20-10 module, the logical channel number contains only the actual physical number of the analog
channel of the ADC. The bit-wise format of the logical channel number is shown in the table below:

Table 4. Logical channel number format

Bit fields Designation Application

<0..1> CH<0..1>

Number of the ADC
channel: ‗00‘ – first
channel; ‗01‘ –
second channel.
 ‗10‘ – third channel;
 ‗11‘ – forth channel.

<2..15> ——— Reserved

E20-10 module

3.2.4. Frame format of counting
 A frame is a sequence of counts from logical channels, from ControlTable [0] to ControlTable
[ControlTableLength-1], where ControlTable is the control table (array of logical channels), and
ControlTableLength determines the size (length) of this table. The necessary control table can be loaded
into the module using the interface function SET_ADC_PARS() (see § 4.5.4. “Module ADC operation
parameter setting”). Time parameter of operating module frame ControlTableLength = 5 are shown in
the next figure:

where Tk is the time interval between adjacent frames (actually the frequency of the polling of the fixed
logical number of the KardRate channel), tmkz = InterKadrDelay is the time interval between the last
count of the current frame and the first count of the next, tADC is the interval of the ADC start up or the
interframe delay. Then 1/tADC = AdcRate is the frequency of operation of the ADC or digitization of the
data, and the value of tmkz can not take values less than tADC. If the frame size, i.e. the number of samples
in the frame is equal to ControlTableLength, then all these time parameters can be related by the
following formula:

Tk = 1/KardRate = (ControlTableLength – 1) * tADC + tmkz,

or

Tk = 1/KardRate = (ControlTableLength – 1)/AdcRate + InterKadrDelay.

 The time parameters AdcRate and InterKadrDelay are used in the interface function SET_ADC_PARS
() when specifying the required data collection mode.

Frame N

Interval ADC
tADC

ADC start

Frame N+1

Interframe delay tmkz

The frame period Tk

Programmer's Manual. Library Lusbapi 3.3. Rev.A3

4. Description of the Lusbapi library
 This section provides a fairly detailed description of the constants, structures, and interface functions that
make up the standard Lusbapi DLL library for the E20-10 module.

4.1. General principles of working with the module
 The goal of the standard DLL library Lusbapi, supplied with the E20-10 module, is to provide a fairly
clear and user-friendly software interface when working with this device. The library contains a certain
set of functions with which you can implement many standard algorithms of data I/O to/from the E20-10
module. Before you start working with the Lusbapi library in the user program, you must make the
following announcement (at least):

 ILE2010 *pModule; // pointer to the interface of the E20-10 module
 MODULE_DESCRIPTION_E2010 md; // structure of the service information about the module
 Firstly, using the function GetDllVersion (), check the version of the Lusbapi library and the current
software.
 If the versions match, then in your application, you need to get a pointer to the module interface by
calling the CreateLInstance () function. In the future, to access all interface functions of the library, it is
necessary to apply this index (see the example below). After that, using the already received pointer to
the module interface, you must initialize access to the corresponding virtual slot to which the E20-10
module is connected. For this, the interface function OpenLDevice () is provided. If there is no error in
running this function, you can be sure that a device of E20-10 type is detected in the selected virtual slot.
 Now, in principle, you can go to the stage of loading the detected module, but sometimes it is useful to
determine the current speed of the used USB port. To this extend, the interface function GetUsbSpeed()
is designed. To operate the module at effective data acquisition frequencies above 500 kHz, it is necessary
that the module together with the USB port work in the so-called High-Speed Mode. This will
correspond to the bandwidth of the USB bus to be ~ 60 MB/s. The maximum bandwidth of the module
itself will be ~ 20 MB/s.
 An important feature of the E20-10 module is that it has a loadable FPGA on it. In order to "heal" the
module and make it work according to the required algorithm, it is necessary to preload the firmware
beforehand in the FPGA. You can use an interface function LOAD_MODULE(). In case of successful
execution of this function, you need to check the operation of the loaded LBIOS using the interface
function MODULE_TEST (). If this function is executed without error, it means that the E20-10 module
has been successfully loaded and is fully ready for further operation.
 At the next stage, it is better to read the service information about the module. It is required while
working with some interface functions of the regular DDL library Lusbapi. The interface function
GET_MODULE_DESCRIPTION () is just intended for this purpose. If a function has not returned an
error, it means that the information about the module is successfully received and you can continue the
work.
 In general, the preliminary stage of work with the E20-10 module can be considered successfully
completed. Now you can safely manage all available peripherals on the module with the appropriate
interface functions of the Lusbapi library and organize various modes of the module. For example, such
modes as:

• continuous stream collection with ADC with synchronization of data input;
• single, and therefore rather slow, data output to a dual-channel DAC;
• single, and therefore quite slow, work with input and output digital lines;
• work with user PROM module and many others.

E20-10 module

 As an example, we will give the source text, or rather say "skeleton," a small console program for
working with the E20-10 module, assuming the use of Lusbapi version no lower than 3.0:

#include <stdlib.h>
#include <stdio.h>
#include "Lusbapi.h" // Lusbapi library header file

ILE2010 *pModule; //a pointer to the module interface
MODULE_DESCRIPTION_E2010 md; // structure with the information about
the module
BYTE UsbSpeed; // USB bus speed
char ModuleName[7]; // module name
int main(void)
{
 //verify the DLL library version
 if(GetDllVersion() != CURRENT_VERSION_LUSBAPI)
 {
 printf("Incorrect version Dll!");
 return 1; //exit the program with an error
 }
 // we get a pointer to the module interface
 pModule = static_cast<ILE2010 *>(CreateLInstance("e2010"));
if(!pModule)
 {
 printf("It is impossible to get a pointer to the interface");
 return 1; //exit the program with an error
 }
 // try to find some module
 // in a null virtual slot
if(!pModule->OpenLDevice(0))
 {
 printf("It is impossible to get the access to the module!");
 return 1; //exit the program with an error
 }
 // try to get the speed of the USB bus
if (!pModule->GetUsbSpeed(&UsbSpeed))
 {
 printf("It is impossible to get the operational speed of USB!\n");
 return 1; //exit the program with an error
 }
 // now display the received speed of the USB bus
printf ("USB is in% s \ n", UsbSpeed? "High-Speed Mode

(480 Mbit/s)" : "Full-Speed Mode (12 Mbit/s)");
 // read the module name in the null virtual slot
if (!pModule->GetModuleName (ModuleName))
 {
 printf("It is impossible to read the module name!\n");

Programmer's Manual. Library Lusbapi 3.3. Rev.A3

 return 1; //exit the program with an error
 }
 // just in case, check: this module is 'E20-10'?
if(strcmp(ModuleName, "E20-10"))
 {
 printf("In the null virtual slot of the module other than 'E20-
10'\n");
 return 1; //exit the program with an error }

 // Now you can try to download from the corresponding resource
 // libraries Lusbapi a firmware to the FPGA module
if (!pModule->LOAD_MODULE())
 {
 printf("Function LOAD_MODULE() is not executed!");
 return 1; //exit the program with an error
 }

 // check the working capacity of the loaded module
if(!pModule->MODULE_TEST())
 {
 printf("Function MODULE_TEST() is not executed!");
 return 1; //exit the program with an error
 }

 // try to read the information about the module
 if(!pModule->GET_MODULE_DESCRIPTION(&md))
 {
 printf("Function GET_MODULE_DESCRIPTION is not executed ()!");
 return 1; //exit the program with an error
 }

 printf("Module E20-10 (serial number %s) is fully ready for\ work!",

md.Module.SerialNumber);

 // further it is possible to have functions for direct //
management of the module, for example, on data collection
from ADC

 // complete the work with the module
 if(!pModule->ReleaseLInstance())
 {
 printf("Function ReleaseLInstance() failed!");
 return 1; //exit the program with an error
 }

E20-10 module

 // exit the program
 return 0;
}

4.2. Constants
 The following basic constants are strongly recommended for use in the source code of the application
when working with the E20-10 module. This greatly improves the readability and understandability of
source code, and also greatly facilitates the maintenance of programs. The constants in question are
located in the file \DLL\Include\Lusbapi.h.

1. The module for starting the data acquisition process requires a hardware start signal. Constant data
determines the source of this signal. The place to use these constants is usually the StartSource
field of the ADC_PARS_E2010 structure.

Constant Value Intended purpose

INT_ADC_START_E2010 0

Start signal is internal and generated by the module
itself. This impulse is not transmitted to the
DI16/START line of the external controller DIGITAL
I/O.

INT_ADC_START_
WITH_TRANS_E2010

1
Start signal is internal and generated by the module
itself. This signal is transmitted to the DI16/START
line of the external DIGITAL I/O connector.

EXT_ADC_START_ON_
RISING_EDGE_E2010

2

It is expected to use an external start signal, which
must be routed to the DI16/START line of the external
DIGITAL I/O connector. In this case, data collection
begins on the first incoming edge of this signal.

EXT_ADC_START_ON_
FALLING_EDGE_E2010

3

It is expected to use an external start signal, which
must be routed to the DI16/START line of the external
DIGITAL I/O connector. At the same time, data
collection begins on the first descendant of this signal.

2. The module requires hardware clock pulses for the operation of the ADC. Constant data
determines the source of this signal. The place to use these constants is usually the StartSource
field of the ADC_PARS_E2010 structure.

Constant Value Intended purpose

INT_ADC_CLOCK_E2010 0
The clock pulses are internal and are generated by the
module itself. The pulses are not transmitted to the
SYNC line of the external DIGITAL I/O connector.

Programmer's Manual. Library Lusbapi 3.3. Rev.A3

INT_ADC_CLOCK_
WITH_TRANS_E2010

1
The clock pulses are internal and are generated by the
module itself. The pulses are transmitted to the SYNC
line of the external DIGITAL I/O connector.

EXT_ADC_CLOCK_ON_
RISING_EDGE_E2010 2

It is expected to use external clock pulses, which must
be connected to the SYNC line of the external
DIGITAL I/O connector. In this case, the ADC
operates along the edge of these pulses.

EXT_ADC_CLOCK_ON_
FALLING_EDGE_E2010

3

It is expected to use external clock pulses, which must
be connected to the SYNC line of the external
DIGITAL I/O connector. In this case, the ADC
operates along the drop of these pulses.

3. Module E20-10 (Rev.'B' and higher) allows you to additionally use analog input data

synchronization. The constants in the table below define the different modes of this
synchronization. The place of use of these constants, as a rule, is the SynchroAdMode field of the
SYNCHRO_PARS_E2010 structure, which is embedded with regard to the structure of
ADC_PARS_E2010.

Constant Value Intended purpose

NO_ANALOG_SYNCHRO_E2010 0 Lack of analog synchronization.

ANALOG_SYNCHRO_ON_
RISING_CROSSING_E2010

1

Analog synchronization of the start of the
data input upon the fact of the transition of
the signal ' from below-upwards' through
the preset threshold on the selected channel.

ANALOG_SYNCHRO_ON_
FALLING_CROSSING_E2010

2

Analog synchronization of the start of the
data input after the signal transition from
'top-down' through the preset threshold on
the selected channel.

ANALOG_SYNCHRO_ON_
HIGH_LEVEL_E2010

3
Analog data input synchronization only if
the signal is located above the preset
threshold on the selected channel.

ANALOG_SYNCHRO_ON_
LOW_LEVEL_E2010

4
Analog data input synchronization only if
the signal is below the specified threshold
on the selected channel.

4. The input channels of the E20-10 module can be energized beyond the specified range. This leads
to the congestion of the channels either to the 'plus' or to the 'minus'. The hardware of the E20-10
module (Rev.'A ') can differently fix the fact of the input channel congestion when data is
collected from the ADC, which is determined by the following constants. Module E20-10
(Rev.'B 'and above) always works in overload limiting mode

E20-10 module

(CLIPPING_OVERLOAD_E2010). The place to use these constants is usually the
OverloadMode field of the ADC_PARS_E2010 structure.

Constant Value Intended purpose

CLIPPING_OVERLOAD_
E2010 0

If there is an overload, the ADC code is
limited to -8192 or 8191.

MARKER_OVERLOAD_
E2010 1

If there is an overload,
the ADC hardware generates
ADC_MINUS_OVERLOAD_MARKER or
ADC_PLUS_OVERLOAD_MARKER
markers instead of the ADC code.
Only for modules Rev. A.

5. The input channels of the E20-10 module have three possible ranges of input voltages. Each of
the ranges can be specified by the following constants. The place to use these constants is usually
the InputRange field of the ADC_PARS_E2010 structure. The InputRange field is an array, each
element of which specifies a specific input range for the corresponding physical channel of the
ADC module.

Constant Value Intended purpose

ADC_INPUT_RANGE_
3000mV_E2010 0

When used in the InputRange field, the input range
is set to ± 3000 mV. You can also use it as an index
to access the first element of the constant array
ADC_INPUT_RANGES_E2010.

ADC_INPUT_RANGE_
1000mV_E2010 1

When used in the InputRange field, the input range
is set to ±1000 mV. You can also use it as an index
to access the second element of the constant array
ADC_INPUT_RANGES_E2010.

ADC_INPUT_RANGE_
300mV_E2010 2

When used in the InputRange field, the input range
is set to ±300 mV. You can also use it as an index to
access the third element of the constant array
ADC_INPUT_RANGES_E2010.

6. The module E20-10 has two possible types of connection of the input channels. The required

connection type is set by the following constants. The place to use these constants is usually the
InputSwitch field of the ADC_PARS_E2010 structure. The InputSwitch field is an array, each
element of which specifies a specific type of connection for the corresponding physical channel
of the ADC module.

Programmer's Manual. Library Lusbapi 3.3. Rev.A3

Constant Value Intended purpose

ADC_INPUT_ZERO_E2010 0
This constant corresponds to the grounded
channel of the ADC module.

ADC_INPUT_SIGNAL_E2010 1
This constant sets the input signal to the input
of the ADC module.

7. On the E20-10 module, a dual-channel 12-bit DAC chip can be installed at the user's request. The
status of the Dac.Active field of the service information structure
MODULE_DESCRIPTION_E2010 reflects the presence of the DAC on board the module.

Constant Value Intended purpose

DAC_INACCESSIBLED_E2010 0 The module completely lacks the DAC chip.

DAC_ACCESSIBLED_E2010 1 The module contains a DAC chip.

8. The revision of the E20-10 module reflects certain design features of the module. It is specified
by one uppercase letter and placed in the Revision field of the embedded structure
MODULE_INFO_LUSBAPI of the service structure MODULE_DESCRIPTION_E2010. For
example, the first revision of the module is designated as the letter 'A'.

Constant Value Intended purpose

REVISION_A_E2010 0
This constant can be used as an index to access the first
element of the constant array REVISIONS_E2010.

REVISION_B_E2010 1
This constant can be used as an index to access the second
element of the constant array REVISIONS_E2010.

9. Module E20-10 allows you to monitor the internal buffer overflow of the module, which leads to
a violation of the integrity of the data collected from the ADC. This information is reflected in the
bit with the number 0 or BUFFER_OVERRUN_E2010 in the BufferOverrun field of the
structure DATA_STATE_E2010. The appearance of the logical state '1' in this bit indicates that
during the data acquisition time the internal buffer of the module has overflowed.

10. Module E20-10 (Rev. 'B' and above) allows you to monitor the global (for all time collection)
and local (during the time of one query) bit attributes of the overflow of the bitmap. The global bit
flag is activated (goes into the "1" state) when the bit grid overflows at any of the 4 physical ADC
channels for the entire time interval from START_ADC () and up to STOP_ADC (). Each of their
local bit attributes is activated (goes into the state of the log "1") when the bitmap overflow occurs
at the corresponding physical ADC channel during the time of one ReadData() request. Each of
these features occupies the corresponding bit in the field ChannelsOverFlow of the
DATA_STATE_E2010 structure. All numbers of available bits are listed in the table below:

E20-10 module

Bit number Constant name Intended purpose

0 OVERFLOW_OF_CHANNEL_1_E2010
Local sign of the word size
overflow of the 1st physical ADC
channel.

1 OVERFLOW_OF_CHANNEL_2_E2010
Local sign of the word size
overflow of the 2nd physical ADC
channel.

2 OVERFLOW_OF_CHANNEL_3_E2010
Local sign of the word size
overflow of the 3rd physical ADC
channel.

3 OVERFLOW_OF_CHANNEL_4_E2010
Local sign of the word size
overflow of the 4th physical ADC
channel.

<4..6> —————— Reserved

7 OVERFLOW_E2010
Global flag for word size
overflow.

11. Various constants for working with the E20-10 module.

Constant Value Intended purpose

CURRENT_VERSION_
LUSBAPI

––––
The version of the Lusbapi library used.
Typically, it is used together with the
GetDllVersion() function.

MAX_CONTROL_TABLE_
LENGTH_E2010

256
The maximum possible number of logical
channels in the ControlTable control table.

ADC_CHANNELS_
QUANTITY_E2010

4
Number of physical channels of the ADC on the
module.

ADC_CALIBR_COEFS_
QUANTITY_E2010

12

The number of correction factors for these ADC
data. One for each channel and for each input
range. The reset and the scale of the ADC data are
subject to adjustment.

DAC_CHANNELS_
QUANTITY_E2010

2
Number of physical channels DAC on the module
(subject to the presence of a DAC chip on the
module).

Programmer's Manual. Library Lusbapi 3.3. Rev.A3

DAC_CALIBR_COEFS_
QUANTITY_E2010

2
The number of correction coefficients for the ADC
data. One for each channel. The reset and the scale
of the ADC data are subject to adjustment.

ADC_INPUT_RANGES_
QUANTITY_E2010

3 The number of input range.

ADC_INPUT_TYPES_
QUANTITY_E2010

2 The number of types of input channel connections.

TTL_LINES_QUANTITY_
E2010 16 The number of input and output digital lines.

USER_FLASH_SIZE_E2010 512 The size of the user PROM area in bytes

REVISIONS_QUANTITY_
E2010 2

The number of revisions (modifications) of the
module.

ADC_PLUS_OVERLOAD_
MARKER

0x5FFF
Marker 'plus' for the ADC channel overload. The
marker mode of channel overloading fix is
implied. Only for the module Rev.'A'.

ADC_MINUS_OVERLOAD_
MARKER 0xA000

Marker 'minus' for the ADC channel overload. The
marker mode of channel overloading fix is
implied. Only for the module Rev.'A'.

12. Different constant arrays for working with the E20-10 module.
12.1. The array of available ADC input voltage ranges in Volts:

 const double
ADC_INPUT_RANGES_E2010[ADC_INPUT_RANGES_QUANTITY_E2010] =

 {
 3.0, 1.0, 0.3
 };

12.2. The output voltage range of the DAC in Volts:
 const double DAC_OUTPUT_RANGE_E2010 = 5.0;

12.3. The module audit reflects certain design features of the module. It is given by one uppercase
letter. For example, the first revision of the module is denoted by the letter 'A'. The current
revision of the module is contained in the Module.Revision field of the service information
structure MODULE_DESCRIPTION_E2010. An array of available module revisions is
specified as follows:

 const BYTE REVISIONS_E2010[REVISIONS_QUANTITY_E2010] =
 {
 'A', 'B'
 };

E20-10 module

4.3. Structures
This section shows the main types of structures that are used in the Lusbapi library when working with
the E20-10 module.

4.3.1. Structure of MODULE_DESCRIPTION_E2010
 Structure of MODULE_DESCRIPTION_E2010 is described in the file
\DLL\Include\Lusbapi.h and presented as follows:

struct MODULE_DESCRIPTION_E2010
{

 MODULE_INFO_LUSBAPI Module; // general information about the module
 INTERFACE_INFO_LUSBAPI Interface; // interface information
 MCU_INFO_LUSBAPI<MCU_VERSION_INFO_LUSBAPI> Mcu; // information about MCU
 PLD_INFO_LUSBAPI Pld; // information about FPGA
 ADC_INFO_LUSBAPI Adc; // information about ADC
 DAC_INFO_LUSBAPI Dac; // information about DAC
 DIGITAL_IO_INFO_LUSBAPI DigitalIo; // information about digital I/O };

 This structure provides the most common service information about the instance of the E20-10 module
used. This structure is used when working with the interface functions SAVE_MODULE_DESCRIPTION
() and GET_MODULE_DESCRIPTION (). The definition of this structure uses the auxiliary constants and
data types described in Appendix A.

4.3.2. Structure of the ADC_PARS_E2010
 Structure of the ADC_PARS_E2010 is a group of parameters that specify the parameters for data
collection from the ADC. This structure is described in the file \DLL\Include\Lusbapi.h and is
presented below:

struct ADC_PARS_E2010
{

 BOOL IsAdcCorrectionEnabled; // automatic adjustment control
// at the FPGA level of the module received from the ADC
// data (for the Rev. 'B' module and above)

 WORD OverloadMode; //fixing the overload of the input channels (for the module Rev.'A')
 WORD InputCurrentControl; // input offset current control

 // (for module Rev.'B' and above)
 SYNCHRO_PARS_E2010 SynchroPars; // input synchronization options

// data from the ADC
 WORD ChannelsQuantity; // number of active channels (frame size)
 WORD ControlTable[256]; // control table with logical channels
 WORD InputRange[ADC_CHANNELS_QUANTITY_E2010]; //input voltage range
 WORD InputSwitch[ADC_CHANNELS_QUANTITY_E2010]; // channel connection type
 double AdcRate; // operation frequency of the ADC, kHz
 double InterKadrDelay; // interframe delay, ms

Programmer's Manual. Library Lusbapi 3.3. Rev.A3

 double KadrRate; // frame frequency, kHz
 double AdcOffsetCoefs[ADC_INPUT_RANGES_QUANTITY_E2010]
 [ADC_CHANNELS_QUANTITY_E2010];
 // array of coefficients to correct the ADC offset:
 // (3 ranges)* (4 channels) (for module Rev.'B' and above)
 double AdcScaleCoefs[ADC_INPUT_RANGES_QUANTITY_E2010]
 [ADC_CHANNELS_QUANTITY_E2010];
 // an array of coefficients for adjusting the ADC scaling:
 // (3 ranges)* (4 channels) (for module Rev.'B' and above)
};
 Before working with the ADC, you must fill in the fields of this structure and transfer it to the module
using the interface function SET_ADC_PARS (). In the description of this function, the meaning and
purpose of all fields of the given structure are explained in detail. Also, if necessary, you can read the
current parameters of the ADC from the module using the interface function GET_ADC_PARS ().

4.3.3. Structure of the SYNCHRO_PARS_E2010
 Structure of the SYNCHRO_PARS_E2010 is a set of parameters used to specify a variety of
synchronization modes for data input from the ADC. This structure is described in the file
\DLL\Include\Lusbapi.h and is presented below:
struct SYNCHRO_PARS_E2010
{
 WORD StartSource; // source of the impulse to start data collection from the ADC
DWORD StartDelay; // delay start of data collection in frame count c
 // the ADC (for module Rev.'B' and above)
 WORD SynhroSource; // source of ADC startup clock
 DWORD StopAfterNKadrs; // stop collecting data after the one specified here
 // count of the collected frames of ADC samples (for
 // module Rev.'B' and above)
 WORD SynchroAdMode; // analogue synchronization mode: by a transition
 // or by a level (for module Rev.'B' and above)
 WORD SynchroAdChannel; // physical channel ADC for an analogue
 // synchronization (for module Rev.'B' and above)
 SHORT SynchroAdPorog; // threshold for analog
 // synchronization (for module Rev.'B' and above)
 BYTE IsBlockDataMarkerEnabled; // marking the beginning of a data block, that
 // is quite convenient, for example, for an analogue
 // synchronization of data input by level
 // (for module Rev.'B' or above)
};
 Structure of the SYNCHRO_PARS_E2010 is a part of the ADC_PARS_E2010 structure.

E20-10 module

4.3.4. Structure of the IO_REQUEST_LUSBAPI
 Structure of the IO_REQUEST_LUSBAPI is described in the file
\DLL\Include\LusbapiTypes.h and presented as follows:

struct IO_REQUEST_LUSBAPI
{

 SHORT * Buffer; // buffer for transmitted data
 DWORD NumberOfWordsToPass; // number of counts to be transferred
 DWORD NumberOfWordsPassed; // number of really transmitted counts

OVERLAPPED * Overlapped;

// for a synchronous request – NULL, and for an asynchronous
 // request – a pointer to the structure OVERLAPPED

DWORD TimeOut; // for synchronous request, timeout in ms, and for
// asynchronous request it is not used

};

 This structure is used by the function ReadData() while transmitting the data received from the ADC
from the module to a computer. In the description of this function, the meaning and purpose of the fields
of this structure are explained in detail.

4.3.5. Structure of the USER_FLASH_E2010
Structure of the USER_FLASH_E2010 is described in the file \DLL\Include\Lusbapi.h and
presented as follows:
struct USER_FLASH_E2010
{

 BYTE Buffer[USER_FLASH_SIZE_E2010]; // size of the function in bytes };
 This structure is designed to store or read the user information. A region of USER_FLASH_SIZE_E2010
bytes in the PROM of the microcontroller is allocated to operate with it. It is used in functions
READ_FLASH_ARRAY() and WRITE_FLASH_ARRAY().

4.3.6. Structure of the LAST_ERROR_INFO_LUSBAPI
Structure of the LAST_ERROR_INFO_LUSBAPIis described in the file \DLL\Include\
LusbapiTypes.h and presented below:
struct LAST_ERROR_INFO_LUSBAPI
{

 BYTE ErrorString[256]; // a line with a brief description of the last error
 DWORD ErrorNumber; // a number of the last error of the library Lusbapi
};

 This structure is used by the GetLastErrorInfox() function to detect errors in the interface functions of
the Lusbapi library.

4.3.7. Structure of the DATA_STATE_E2010
Structure of the DATA_STATE_E2010 is described in the file \DLL\Include\Lusbapi.h and
presented below:
struct DATA_STATE_E2010

Programmer's Manual. Library Lusbapi 3.3. Rev.A3

{
 BYTE ChannelsOverFlow; // bit signs of input channel overload
 // for the module Rev.'B' and above
 BYTE BufferOverrun; // bit signs of internal overflow
 // module's hardware buffer
 DWORD CurBufferFilling; // current internal buffer occupacy
 // for the module Rev.'B' and above, in counts
 DWORD MaxOfBufferFilling; // for the duration of the collection, the maximum occupancy
 // of the module's internal buffer Rev.'B' and above, in counts
 DWORD BufferSize; // the buffer capacity of the module Rev.'B' and above, in counts
 double CurBufferFillingPercent; // the current level of occupancy of the internal
 // buffer of the module Rev.'B' and above, %
 double MaxOfBufferFillingPercent; // and during the collection the maximum degree
 // of occupancy of the internal buffer of the module Rev.'B' and
above, % };

 This structure is used by the GET_DATA_STATE() function while polling the current state of the data
collection process. In the description of this function, the meaning and purpose of the fields of this
structure are explained in detail.

E20-10 module

4.4. General functions

4.4.1. Getting the library version
Format: DWORD GetDllVersion(void)
Assignment:
This function is one of two exported functions from the regular library Lusbapi by the function. It
returns the current version of the used library. The format of the version number is:

Bit field Intended purpose

<31..16> The high word of the library version

<15..0> The low word of the library version

For the recommended sequence of calls for interface functions, see § 4.1. "General principles of
working with module".
Transmitted parameters: no.
Returned value: version number of the Lusbapi library.

4.4.2. Getting the pointer to the module's interface

Format: LPVOID CreateLInstance(PCHAR const DeviceName)
Assignment:
This function should always be called at the beginning of each user program that works with the
E20-10 modules. It is one of two functions exported from the regular Lusbapi library and returns a
pointer to the interface for a device called DeviceName. All subsequent interface functions of the
standard library are called precisely through this returned pointer.
For the recommended sequence of calls for interface functions, see § 4.1. "General principles of
working with the module"
Transmitted parameters:
DeviceName is a string with the device name (for this module it is "E2010").
Returned value: If successful, the pointer to the interface, otherwise — NULL.

4.4.3. Shutting down with the module interface

Format: BOOL ReleaseLInstance(void)
Assignment:
This interface function implements the correct release of the interface of the E20-10 module,
initialized with the CreateLInstance() function. It is used to close the session with the module
neatly (if the CreateLInstance() function was successfully executed beforehand). !!!Attention!!!
This function must be called in the application before it is terminated in order to avoid leakage of
Windows resources.
For the recommended sequence of calls for interface functions, see § 4.1. "General principles of
working with module".
Transmitted parameters: no.
Returned value: TRUE – function was successfully executed;
 FALSE – function was executed with an error.

Programmer's Manual. Library Lusbapi 3.3. Rev.A3

4.4.4. Initialization of access to the module.
Format: BOOL OpenLDevice(WORD VirtualSlot)
Assignment:
From a programmatic point of view, without going into too much detail, the E20-10 module
connected to the computer can be considered as a device connected to a virtual slot with a strictly
individual number. The main purpose of this interface function is just to determine that it is the E20-
10 module that is in the specified virtual slot. If OpenLDevice() function was successfully executed
for a given virtual slot, you can go directly to the module load and its subsequent management with
the appropriate interface functions of the Lusbapi library.
For the recommended sequence of calls for interface functions, see § 4.1. "General principles of
working with module".
Transmitted parameters:
VirtualSlot is the virtual slot number to which the E20-10 module is supposed to be connected.
Returned value: TRUE – the module E20-10 is in the selected virtual slot and you can start module

loading;
FALSE – there is no device of the E20-10 module type in the selected virtual slot.
You should try another virtual slot number.

4.4.5. Shutting down the access to the module

Format: BOOL CloseLDevice(void)
Assignment:
This interface function interrupts any interaction with the current virtual slot to which the module is
connected. This virtual slot is neatly closed and the Windows resources associated with it are
released. After successful execution of this function, any access to the E20-10 module becomes
impossible. To resume normal access to the device, use the OpenLDevice() interface function again.
Thus, this function is opposite to the OpenLDevice() function. In fact, this function is used in such
interface functions as OpenLDevice() and ReleaseLInstance().
Transmitted parameters: no.
Returned value: TRUE – function was successfully executed;
 FALSE – function was executed with an error.

4.4.6. Module loading
Format: BOOL LOAD_MODULE(PCHAR const FileName = NULL)
Assignment:
This interface function performs the operation of downloading the firmware (standard or user) in the
FPGA module. The binary file FileName with the firmware code must be in the current application
directory. It is possible to load FPGA firmware, stored in the body of the library in the form of a
corresponding resource, in the standard library. To do this, simply set the FileName parameter as
NULL. NULL is also the default value for the FileName parameter.
For the recommended sequence of calls for interface functions, see § 4.1. "General principles of
working with module".
Transmitted parameters:
FileName – a string with the name of the binary firmware FPGA module. For example, for firmware
files, this is the string "E2010.pld" (for the Rev.'A' module) or "E2010m.pld" (for the
Rev.'B' module or above). If this parameter is set to NULL or absent at all, then the module will be

E20-10 module

loaded by the firmware that is in the form of a resource in the body of the standard library.
Returned value: TRUE – function was successfully executed;
 FALSE – function was executed with an error.

4.4.7. Module loading check
Format: BOOL TEST_MODULE(void) (version 3.1 and below)
 BOOL TEST_MODULE(WORD TestModeMask = 0x0) (version 3.2 and higher)
Assignment:
For the E20-10 module (Rev.'A'), this interface function is only a stub and does not carry any
functional load.
For the E20-10 module (Rev.'B' and above), this interface function checks the functional state of
the FPGA module. In addition, this function allows you to transfer the module to the test mode of
operation, which is used exclusively for commissioning purposes.
Transmitted parameters:
TestModeMask – the required test mode of the module. If the TestModeMask parameter is zero, the
module goes into normal operation mode.
Returned value: TRUE – FPGA is loaded and functions properly;
 FALSE – there was an error loading or functioning of the FPGA module.

4.4.8. Getting the module name
Format: BOOL GetModuleName(PCHAR const ModuleName)
Assignment:
This auxiliary interface function allows you to get the name of the module connected to the slot. An
array named module ModuleName (at least 6 characters plus the end-of-line character of ‗\0', that is,
zero byte) must be predefined.
For the recommended sequence of calls for interface functions, see § 4.1. "General principles of
working with module".
Transmitted parameters:
ModuleName – returns a string, at least 6 characters, with the name of the module (in our case this
should be the string "E20-10").
Returned value: TRUE – function was successfully executed;
 FALSE – function was executed with an error.

4.4.9. Getting the speed of the module

Format: BOOL GetUsbSpeed(BYTE * const UsbSpeed)
Assignment:
 This function allows you to determine at what speed the USB bus works with the module.
Transmitted parameters:
 UsbSpeed – the return value of this variable can take the following:
 0 – the module functions with the USB bus in the Full-Speed Mode mode (12 Mb/s)
 1 – the module functions with the USB bus in the High-Speed Mode mode (480 Mb/s).

Returned value: TRUE – function was successfully executed;
 FALSE – function was executed with an error.

Programmer's Manual. Library Lusbapi 3.3. Rev.A3

4.4.10. Getting the module descriptor
Format: HANDLE GetModuleHandle(void)
Assignment:
This function allows you to get the descriptor (handle) of the used module E20-10.
Transmitted parameters: no
Returned value: In case of success, the descriptor of the E20-10 module;
 Otherwise, INVALID_HANDLE_VALUE.

4.4.11. Obtaining a description of the functions execution errors

Format: BOOL GetLastErrorInfo(LAST_ERROR_INFO_LUSBAPI * const
LastErrorInfo)
Assignment:
If during the work with the Lusbapi library some interface function of the standard library returned
an error, then only after this, by calling this interface function, you can get a brief interpretation of
the failure. For some functions, such as ReadData(), you may need to call the standard Windows API
GetLastError() function to identify the errors of the Windows itself, if the cause of the error is
identified.
Transmitted parameters:
LastErrorInfo – a pointer to the type structure LAST_ERROR_INFO_LUSBAPI, in which a short
description and the number of the last error is returned.
Returned value: TRUE – function was successfully executed;
 FALSE – function was executed with an error.

E20-10 module

4.5. Functions for working with ADC
 The hardware of the E20-10 module and, accordingly, the Lusbapi library are designed to organize
continuous streaming of data collection from the ADC at frequencies up to 10 MHz. At the same time,
even a multi-module (by the principle "master-slave") mode of data acquisition is quite feasible under
different conditions of input synchronization.
 Before starting the data collection from the ADC, you must send the required parameters to the module:
type of synchronization, frequency of operation of ADC, control table, etc. This operation can be
performed using the interface function SET_ADC_PARS(). After that, in principle, you can run the
module to collect data by executing the function START_ADC(). The data received from the ADC module
will be transmitted via the USB bus to the computer as necessary. To implement the ADC data transfer
from the module to the PC, you should use the regular ReadData() function. The ReadData() function
can be executed in both synchronous and asynchronous modes. After completing the last portion of the
collected data, but no later than 400 ms, it is strongly recommended to perform the function of
completing the collection function STOP_ADC(). After that, using the function GET_DATA_STATE(),
you can check the status of the completed data collection process for failures or collection errors.
 Before operating the module at an effective collection frequency of more than 500 kHz, you need to
make sure that the E20-10 module communicates with the USB bus in the so-called High-Speed Mode.
To this end it is recommended to use the GetUsbSpeed() function.
 A whole set of examples on how to organize continuous data collection with the E20-10 module for
various development environments can be found on our CD-ROM in the \E20-10\Examples\
directory.

4.5.1. ADC data correction
 Circuitry and used electronic components provide the linearity of the transmission characteristic of the
ADC path of the E20-10 module. However, the module does not have any trimmer resistors. And
although this allows improving the noise characteristics of the module and increasing the reliability of the
module, it inevitably leads to the fact that the ADC input may have some mixing of zero and inaccuracy
in the transmission scale. Therefore, either at the FPGA level of the module or at the application level, it
is necessary to organize the correction of the data received from the ADC.
 For the module E20-10 (Rev.'A'), the correction of data collection at the application level was provided.
But in the module E20-10 (Rev.'B' and above) there is an additional possibility of automatic correction
at the FPGA level. That is, the module itself corrects the received ADC data. At the same time, it is
perfectly possible to use both standard (factory) and own ones, user, adjustment factors. User adjustment
factors can be used, for example, to compensate for errors in the whole measuring path of a stand, of
which the E14-140 module can be a component. At the same time, the entire responsibility for the
formation and correct application of the user adjustment factors lies entirely on the shoulders of the end
user.
 Standard (factory) adjustment factors are located in the fields Adc.OffsetCalibration[] and
Adc.ScaleCalibration[] of the service information structure MODULE_DESCRIPTION_E2010. All
service information together with adjustment factors is recorded in the module at the stage when it is set
up at LLC "L-Card". The coefficient fields are arrays of type double. For the E20-10 module, only the
first ADC_CALIBR_COEFS_QUANTITY_E2010 elements are used in each of these arrays. An array
Adc.OffsetCalibration contains coefficients to adjust the zero offset, and an array Adc.ScaleCalibration to
adjust the scale. If we denote by i the physical channel number of the ADC module, and via j – the index
of the input range of this channel, then the channel correction factors can be obtained as follows:

• offset: Adc.OffsetCalibration[i + j*ADC_CHANNELS_QUANTITY_E2010];
• scale: Adc.ScaleCalibration[i + j*ADC_CHANNELS_QUANTITY_E2010].

In general, the procedure for correcting the ADC samples is performed using the following formula:

Programmer's Manual. Library Lusbapi 3.3. Rev.A3

Y = (X+A)*B,
where: X – uncorrected ADC data [in ADC counting],

Y – corrected ADC data [in ADC counting],
A – a zero offset coefficient [in ADC counting],
B – a scale coefficient [unsized].

 For example, from the second ADC channel tuned to the input range of ±1.0 V (index range is 1 or
ADC_INPUT_RANGE_1000mV_E2010), the following data is received: X1 = 1000, X2 = –1000 and
X3 = 0. Then the coefficients and the corrected data can be represented as follows:

A = Adc.OffsetCalibration[1 + 1*ADC_CHANNELS_QUANTITY_E2010];
B = Adc.ScaleCalibration[1 + 1*ADC_CHANNELS_QUANTITY_E2010];
Y1 = (A+1000)*B, Y2 = (A-1000)*B, Y3 = A*B.

4.5.2. Running ADC data collection
Format: BOOL START_ADC(void)
Assignment:
This function starts the E20-10 module for continuous streaming of data from the ADC. Before any
start of data collection, it is highly recommended to perform STOP_ADC() function. Before the start
of the collection, you can set the required parameters of the ADC's operation, which are transferred
to the module using the interface function SET_ADC_PARS().
Also, the START_ADC() function resets the integrity of the module data to its original zero state.
The extraction of data coming from the module can be performed using the interface function
ReadData().
Transmitted parameters: no
Returned value: TRUE – function was successfully executed;
 FALSE – function was executed with an error.

4.5.3. Stopping ADC data collection
Format: BOOL STOP_ADC(void)
Assignment:
This function stops the data acquisition mechanism from the ADC in the E20-10 module. Along the
way, this function "brings to mind" the main program (Firmware) of the microcontroller module, and
also resets the data channel used via the USB bus. Therefore, it is strongly recommended to use this
function before every data collection run by the START_ADC() function. It is also highly
recommended that STOP_ADC() be used after the last portion of the collected data is entered, but no
later than a certain period of time. For example, for a collection frequency of 10 MHz, this period
should not be more than 400 ms. This makes it possible to use GET_DATA_STATE() function to get
the integrity indicator of all the latest data collected from ADC.
Transmitted parameters: no
Returned value: TRUE – function was successfully executed;
 FALSE – function was executed with an error.

E20-10 module

4.5.4. Module ADC operation parameter setting

Format: BOOL SET_ADC_PARS(ADC_PARS_E2010 * const AdcPars)
Assignment:
 This function sends to the E20-10 all the necessary information that is used by the module to
organize the specified data collection mode from the ADC. The described interface function retrieves
all the necessary information from the fields of the transmitted structure of type ADC_PARS_E2010.
Actually, the use of this particular transmitted information by the module starts only after the
interface function START_ADC() is executed. It is also highly discouraged to call this function in the
actual data collection process. It should be used only after performance of the STOP_ADC() function.
 The format of the structure of ADC_PARS_E2010 is given earlier in § 4.3.2. "Structure
ADC_PARS_E2010", and the meaning and purpose of its individual fields is described in sufficient
detail below.

• Field AdcPars->IsAdcCorrectionEnabled. Entry. For the E20-10 (Rev.'A') module, this
field does not carry any functional load. For the E20-10 module (Rev.'B' and above) with
this field, you can set the automatic correction (at the FPGA module level) of the data received
from the ADC. When using automatic correction, it is necessary to correctly fill
AdcOffsetCoefs[] and AdcOffsetCoefs[] arrays with the corresponding
coefficients. For most cases, you can use the factory adjustment coefficients that are located in
the Adc.OffsetCalibration[] and Adc.ScaleCalibration[] fields of the service information
structure MODULE_DESCRIPTION_E2010.
Field AdcPars->OverloadMode. Entry. The input channels of the E20-10 module can be
energized beyond the specified range. This leads to the congestion of the channels either to
the 'plus' or to the 'minus'. The hardware of the E20-10 module (Rev. 'A') can differently
record the fact of the input channel overload when data is collected from the ADC, which is
set by the following overload constants. And the module E20-10 (Rev.'B' and above)
always functions in the mode of overflow limiting (CLIPPING_OVERLOAD_E2010). The
meaningful loading of the values of this field is presented in the table below:

 Field AdcPars->InputCurrentControl. Entry. For the E20-10 (Rev.'A') module, this field
does not carry any functional load. For the module E20-10 (Rev.'B' and above) with this
field it is possible to control the input current of the analog module's offset. This field can be
either 0 or 1. For more information about the input offset current, see "E20-10. User
Manual. § 6.5.4. ADC entry point connection.".

Value Constant Description

0 CLIPPING_
OVERLOAD_E2010

Limiting. If there is an overload, the reference code
from the ADC is limited to -8192 or 8191.

1 MARKER_
OVERLOAD_E2010

Markers. If there is an overload, the hardware of the
module mixes the overload indicator in the ADC
reference code. In this case, markers
ADC_MINUS_OVER-LOAD_MARKER (with
‗minus‘ overload) or
ADC_PLUS_OVERLOAD_MARKER (with ‗plus‘
overload) are formed. Only for the module Rev. A.

http://www.lcard.ru/download/e20_10_users_guide_en.pdf
http://www.lcard.ru/download/e20_10_users_guide_en.pdf

Programmer's Manual. Library Lusbapi 3.3. Rev.A3

• Field AdcPars->SynchroPars. Write-Read. This field is a nested structure type
SYNCHRO_PARS_E2010 in which all the parameters are grouped related to synchronization
of data input:

• Field AdcPars.StartSource Entry. To start the process of collecting the start signal.
This field defines the source of the signal. This field can take one of four, and you can
also use the start signal constants. The meaningful loading of the values of this field
is presented in the table below:

Value Description

0

Internal source of the start signal without its translation to the output
In this mode, when the method START_ADC() is called, the data
collection from the ADC is automatically started. In this case, the digital
DI16/START of the external DIGITAL I/O connector is configurable with
respect to the module and there is no start signal on it.

1

Internal source of the start signal with its translation to the output
In this mode, when the method START_ADC() is called, the data
collection from the ADC is automatically started. In this case, the digital
START of the external DIGITAL I/O connector is configured both in
relation to the module and when the ADC starts, an event will occur on it
in the form of a DI16/START transition from the state 'to ‗1' (rising edge).
The DI16/START line will be logged as ‗1' as long as the data is being
collected from the ADC and the initial state is log. ‗0', when data
collection is programmed to stop using the STOP_ADC() function.

2

External source of the start signal with activity on the leading edge.
In this mode, when the function START_ADC() is called, the module goes
into the standby mode of the event on the digital line DI16/START of the
DIGITAL I/O connector. In this case, the digital line is configured as an
input in relation to the module and events on it in the form of a transition
of the line DI16/START 0' to ‗1' (rising edge) the ADC collection starts.

3

External source of the start signal with the activity on the back edge. In
this mode, when the function START_ADC() is called the module enters
the event waiting mode on the DI16/START digital line of the DIGITAL
I/O terminal. In this case, the digital line is configured as an input with
respect to the module and when an event is detected in the form of a
transition of the DI16/START line from 1' to ‗0' (trailing edge), the ADC
collection starts.

• Field AdcPars.StartDelay Write-Read. For the module E20-10 this field does not

have any functional load. For the module E20-10 with this field, it is possible to set
the delay of the start moment in ADC count frame. Range of admissible values. Thus,
after the arrival of the hardware start signal itself only after the specified number of
count frames has been skipped.

• Field AdcPars->SynchroPars.SynhroSource. Entry. The operation of the ADC
requires the presence of hardware clock pulses. This field determines the source of the
formation of these pulses. This field can take one of the four values from 0 to 3, and
you can also use the clock impulse constants. It should be remembered that when
selecting an external clock impulse source, their frequency should be strictly in the

E20-10 module

range from 1 MHz to 10 MHz. The meaningful loading of the values of this field is
presented in the table below:

Value Description

0

Internal clock source without their translation to the module output.
In this mode, when the method START_ADC() is called, internal clock
impulses generation is performed for the ADC module. In this case, the
SYNC digital line of the external DIGITAL I/O connector is configured
as an input to the module and the clock pulses are not transmitted to it.

1

Internal source of clock pulses with their translation to the module
output. In this mode, when the method START_ADC() is called, internal
clock impulses generation is performed for the ADC module. In this
case, the SYNC digital line of the external DIGITAL I/O connector is
configured as output with regard to the module and the generated clock
pulses are transmitted to it.

2

External clock source with activity on the leading edge. In this mode,
when the START_ADC() function is called, an external clock source is
used, that is connected to the digital line SYNC of the external
DIGITAL I/O connector. In this case, the SYNC line is configured as
an input with regard to the module and an event in the form of a signal
transition on this line from the log state ‗0' to ‗1' (rising edge) is
interpreted as an external sync signal for ADC operation.

3

External clock source with activity on the falling edge. In this mode,
when the START_ADC() function is called, an external clock source is
used, that is connected to the digital line SYNC of the external
DIGITAL I/O connector. In this case, the SYNC line is configured as
an input with regard to the module and an event in the form of a signal
transition on this line from the log state ‗1' to ‗0' (trailing edge) is
interpreted as an external sync signal for ADC operation.

• Field AdcPars->SynchroPars.StopAfterNKadrs. Write-Read. For the E20-10

(Rev.'A') module, this field does not carry any functional load. For the module E20-
10 (Rev.'B' and higher) with this field, you can organize stopping the data collection
after the number of collected frame counts specified here. Range of values from 0 to
16 777 215. If the StopAfterNKadrs field is set to 0, this parameter will be
completely ignored by the module when data is collected. Particular mention should be
made of the advanced features of the module with StopAfterNKadrs 0 and certain
synchronization conditions: by an external start signal (the StartSource field is 2 or 3)
and/ or with analog synchronization on the transition (the SynchroAdMode field is 1
or 2). In this case, the module will collect data by the block after StopAfterNKadrs for
each execution of synchronization conditions.
For example, if StopAfterNKadrs = 1024 and StartSource = 0x2 are specified, then
after executing START_ADC(), the module will go into the standby mode of the active
drop to the external clock line. If this is detected, the module will collect a 1024-frame
data block, and then automatically return to waiting for the next active sync. impulse.
This process will continue cyclically until the STOP_ADC() function is executed. In
principle, the module can label each received block of data in a special way, if the
IsBlockDataMarkerEnabled field is set to 1 in addition.

Programmer's Manual. Library Lusbapi 3.3. Rev.A3

• Field AdcPars->SynchroPars.SynchroAdMode. Entry. For the E20-10 (Rev.'A')
module, this field does not carry any functional load. For the E20-10 module
(Rev.'B' and higher), this field allows you to specify different modes of analog input
data synchronization. This field can take one of five values from 0 to 4, and you can
also use the constants of analog synchronization modes. The meaningful loading of
the values of this field is presented in the table below:

Constant Value Intended purpose

NO_ANALOG_SYNCHRO_E2010

0

Lack of analog synchronization.

ANALOG_SYNCHRO_ON_

RISING_CROSSING_E201
0

1

Analog synchronization of the
start of the data input upon the
fact of the transition of the
signal ' from below-upwards'
through the preset threshold on
the selected channel

ANALOG_SYNCHRO_ON_

FALLING_CROSSING_E201
0

2

Analog synchronization of the
start of the data input after the
signal transition from 'top-down'
through the preset threshold on
the selected channel.

ANALOG_SYNCHRO_ON_

HIGH_LEVEL_E2010

3

Analog data input
synchronization only if the
signal is located above the
preset threshold on the selected
channel.

ANALOG_SYNCHRO_ON_

LOW_LEVEL_E2010

4

Analog data input
synchronization only if the
signal is below the specified
threshold on the selected
channel.

• Field AdcPars->SynchroPars.SynchroAdChannel. Entry. For the E20-10 (Rev.'A')

module, this field does not carry any functional load. For the E20-10 module
(Rev.'B' and above), using this field, you can set the physical ADC channel for the
selected analogous synchronization. This field can take one of four values from 0 to 3.

• Field AdcPars->SynchroPars.SynchroAdPorog. Entry. For the E20-10 (Rev.'A')
module, this field does not carry any functional load. For the E20-10 module
(Rev.'B' and above), the analogous synchronization threshold can be set using this
field. The threshold is set in the ADC codes in the range from -8192 to 8191.

• Field AdcPars->SynchroPars.IsBlockDataMarkerEnabled. Entry. For the E20-10
(Rev.'A') module, this field does not carry any functional load. When the field
IsBlockDataMarkerEnabled is set to 1, the hardware module E20-10 (Rev.'B' and
above) inserts an artificial logical marker in the first sample of each continuous (by

E20-10 module

time) data block, which is encoded by setting the value "01" in the fields <15..14>
countdown of the data. Such a marker allows you to distinguish the beginning of one
continuous piece of data from the other at the upper software level. The presence of
such a marker can be particularly useful for, for example, data entry using analog level
synchronization.

• Field AdcPars->ChannelsQuantity. Write-Read. This field specifies the number of active
logical channels in the ControlTable control table. That is, when data is collected from the
ADC, the first AdcPars->ChannelsQuantity of the elements of the AdcPars->ControlTable
array will be used. The limit value for this parameter is 256 or
MAX_CONTROL_TABLE_LENGTH_E2010. If the AdcPars->ChannelsQuantity value
passed to the function exceeds the specified limit value, the function automatically performs
the necessary adjustment. And when the function is completed, the number of active logical
channels in the AdcPars-> ChannelsQuantity field will be actually set.

• Field AdcPars->ControlTable[]. Entry. This field specifies the ControlTable control table.
That is, the same array of logical channels that the module will use when working with the
ADC to specify a cyclic sequence of counts from the input channels.

• Field AdcPars->InputRange[]. Entry. This field sets the input ranges for all ADC physical
channels of the E20-10 module. The field is an array of type WORD, consisting of 4
(ADC_CHANNELS_QUANTITY_E2010) elements. An array element with index 0
corresponds to the input range of the first ADC channel, etc. Each element of the array can be
equal from 0 to 2. You can also use input range constants. The meaningful loading of the
values of this field is presented in the table below:

The value of an
array element

Constant Description

0 ADC_INPUT_RANGE_
3000mV_E2010

Input range is ±3000

1 ADC_INPUT_RANGE_
1000mV_E2010

Input range is ±1000

2 ADC_INPUT_RANGE_
300mV_E2010

Input range is ±300

• Field AdcPars->InputSwitch[]. Entry. This field specifies the type of connections or the input

switching mode for all physical ADC channels of the E20-10 module. The field is an array of
type WORD, consisting of 4 (ADC_CHANNELS_QUANTITY_E2010) elements. An array
element with index 0 corresponds to the input range of the first ADC channel, etc. Each
element of the array can be equal from 0 to 1. You can also use connection-type constants.
The meaningful loading of the values of this field is presented in the table below:

Array element

value Constant Description

0 ADC_INPUT_ZERO_E2010 The input of the ADC channel is switched
to the analog ground of the module.

1

ADC_INPUT_SIGNAL_E2010

The input signal is transmitted to the
ADC channel entrance.

Programmer's Manual. Library Lusbapi 3.3. Rev.A3

• Fields AdcPars->AdcRate and AdcPars->InterKadrDelay. Write-Read. These fields are valid
only when the module uses internal clock pulses, which is determined by the AdcPars-
>SynchroPars.SynhroSource field. When entering the function, these fields must contain the
required time parameters for data collection: ADC operational frequency AdcRate (inverse
value of the interchannel delay) and interframe delay InterKadrDelay. In this case AdcRate
is set in kHz, and InterKadrDelay is set in ms. After executing the function
SET_ADC_PARS(), these fields return the real values of the inter-channel and inter-frame
delay values, which are as close as possible to the initial ones. This is due to the fact that the
actual values of AdcRate and InterKadrDelay are not continuous values, but form a certain
frequency spectrum. So, the frequency of the ADC is determined by the following formula:
AdcRate = 30000/N, where N – integer value from 3 to 30. Therefore, this function simply
calculates the discrete value closest to the given value AdcRate passes it to the module as an
integer N, and returns its value in the AdcPars->AdcRate field. All the same is true for
interframe delay, with the only difference being that it is set in units of 1/AdcRate, with the
previously corrected AdcRate. InterKadrDelay can be in the range from 1/AdcRate to 255/
AdcRate (for the E20-10 module (Rev.'A')) or 65535/AdcRate (for the E20-10 module
(Rev.'B' and high)). For example, if you set AdcPars->AdcRate=0.0, then
SET_ADC_PARS() sets and returns the lowest possible value for this variable, i.e. 1000.0
kHz. Similarly: if set AdcPars->InterKadrDelay=0.0 then this function will set and return the
minimum possible inter-frame delay, i.e. 1/AdcPars->AdcRate.

• Field AdcPars->KadrRate. Read. This field returns the frequency of the KardRate frame
in kHz. This field is effective only when the module uses internal clock pulses, which is
determined by the AdcPars->SynchroPars.SynhroSource field. This frequency is
calculated based on the AdcPars->ChannelsQuantity, as well as the already adjusted
AdcPars->AdcRate and AdcPars->InterKadrDelay. In addition, for the relations between
the above values AdcPars->ChannelsQuantity, AdcPars->AdcRate, AdcPars-
>InterKadrDelay and AdcPars->KadrRate, see § 3.2.4. "Format of frame count".

• Field AdcPars->AdcOffsetCoefs[][]. Entry. The field is a two-dimensional array of type
double, consisting of ADC_INPUT_RANGES_QUANTITY_E2010x ADC_CHANNELS_
QUANTITY_E2010 elements. For the E20-10 (Rev.'A') module, this field does not carry
any functional load. For the module E20-10 (Rev.'B' and high) in this array, the
coefficients used by the FPGA module should be located to perform automatic
correction of the offset obtained from the ADC data. The resolution to use automatic
correction of data set by the field AdcPars->CorrectionEnabled. For details on
adjusting the data, see § 4.5.1. "ADC data correction".

• Field AdcPars->AdcScaleCoefs[][]. Entry. The field is a two-dimensional array of type
double, consisting of ADC_INPUT_RANGES_QUANTITY_E2010x ADC_CHANNELS_
QUANTITY_E2010 elements. For the E20-10 (Rev.'A') module, this field does not carry any
functional load. For the module E20-10 (Rev.'B' and high) in this array, the coefficients used
by the FPGA module should be located to perform automatic correction of the offset
obtained from the ADC data. The resolution to use automatic correction of data set by the
field AdcPars->CorrectionEnabled. For details on adjusting the data, see § 4.5.1. "ADC data
correction".

Transmitted parameters:
AdcPars is the address of a structure of type ADC_PARS_E2010 with the required parameters of the
data acquisition function from the ADC.

E20-10 module

Returned value: TRUE – function was successfully executed;
FALSE – function was executed with an error.

4.5.5. Getting the current ADC work parameters
Format: BOOL GET_ADC_PARS(ADC_PARS_E2010 * const AdcPars)
Assignment:
This function reads all the current information from the E20-10 module, which is used to collect data
from the ADC.
Transmitted parameters:
AdcPars is the address of a structure of type ADC_PARS_E2010 with the required parameters of the
data acquisition function from the ADC.
Returned value: TRUE – function was successfully executed;
 FALSE – function was executed with an error.

4.5.6. ADC data acquisition

Format: BOOL ReadData(IO_REQUEST_LUSBAPI * const ReadRequest)

Assignment:
This function is designed to obtain the next portion of data from the ADC module. This function
must be used in conjunction with the START_ADC() and STOP_ADC() functions.
The fields of the transmitted structure type IO_REQUEST_LUSBAPI define the parameters and the
required mode for obtaining data from the E20-10 module. The assignments for the fields of this
structure are given in the table below:

Field name Description
Buffer Data buffer. Read. Buffer is intended for storage of data

received from the module of ADC. Before using it in a
function, the application itself must take care of allocating a
sufficient amount of memory for this buffer. The received
data in the buffer will be located in a frame-by-frame
manner: 1st frame, 2nd frame and so on. And the position of
the counts in the frames will be the same as the ordering of
the corresponding logical channels in the ControlTable
control table.

NumberOf-
WordsToPass

Number of transmitted data. Write-Read. This parameter
specifies the number of samples of the ADC, which this
function simply must try with the module. Depending on the
revision of the module, this parameter has the following
limitations:

• for module E20-10 (Rev.'A'), the NumberOfWords-
ToPassNumberOf- value must be in the range from
256 to (1024 * 1024), and also WordsToPass must
be a multiple of 256;

• for the module E20-10 (Rev. 'B' and
above) value NumberOfWordsToPass should be in
the range from 1 to (1024 * 1024).

Programmer's Manual. Library Lusbapi 3.3. Rev.A3

Otherwise, this function corrects the value of this field itself,
and upon returning from the function it will actually be the
used value of the number of requested data.

NumberOf-
WordsPassed

Number of transmitted data. Read. In this parameter, the
number of ADC counts that this function actually received
from the module is returned. For the asynchronous mode of
this function (see the field Overlapped below
WordsPassed), the number 0 may well return in this
parameter, which is not an error, given the specifics of this mode.

Overlapped Structure Overlapped. This field determines in which mode
this function will be executed: synchronous or
asynchronous:
Overlapped = NULL. In this case, the function requires a
synchronous execution mode. In this case, the function
honestly tries to get all the requested data from the module,
and during this time the function does not return control to
the application that caused it. If during the TimeOut time ms
(see below) all the required data from the module is not
received, the function terminates and returns an error.

Overlapped NULL. In this case, the function requires an
asynchronous execution mode. It is assumed that the
application has already assigned a pointer to a pre-prepared
structure of type OVERLAPPED. In this mode, this function
exposes the system, i.e. Windows, asynchronous request to
get the required number of data from the module and
immediately returns the control to the application. That is,
there is as it were a complete shift of the task of collecting
data on the core of the system. Since an asynchronous
request is already executed at the core level, while it is
processing it, the application can fully handle its own tasks.
The end of the current asynchronous query application can
be monitored using standard Windows API functions such as:
WaitForSingleObject(), GetOverlappedResult() or
HasOverlappedIoCompleted(). These functions use the Event
event, which must previously have been defined by the
application in the corresponding field of the Overlapped
structure. Event Event is activated by the system at the end of
the collection of all requested data, thus completing the
current asynchronous request. In some cases, it may simply
be necessary to interrupt the running asynchronous request.
For this purpose, and there is a regular Windows API function
CancelIo(). Unfortunately, this function exists only on
Windows NT systems.

TimeOut Waiting time for data collection. This field is intended for
use only in synchronous mode. It specifies the maximum
time in ms for waiting for the completion of a synchronous
request to collect the required quantity of the data. If after
this time all data requested by the request is not received, the
function completes and returns an error.

E20-10 module

On the E20-10 module, an internal hardware FIFO data buffer of 8 MB is installed. Such

a large buffer requires reliable data collection at large input frequencies. So, at collection
frequencies of the order of 10 MHz, the buffer overflow will occur only after 400 ms, which is
a sufficiently long period of time even for such a "wistful" system like Windows. Now we should
mention some specific features of the modes of this function:

1. Synchronious mode. This mode is recommended to be used when organizing a single
data collection, in which the number of counts does not exceed 1024 * 1024 = 1 M
words. In this mode, the ReadData() function should only be called after the successful
execution of the START_ADC() function, which, in principle, must be preceded by the
call to the function STOP_ADC(). It is necessary to use this mode with great care at
sufficiently slow collection frequencies and a large amount of requested data. Otherwise,
this function can 'go' for a long time waiting for the data collection to complete and,
therefore, for a very long time, do not return control to the application. An example of
the correct use of the regular functions of the Lusbapi library in synchronous mode as
a normal console application can be found on our proprietary CD-ROM in the directory
\E20-10\Examples\Borland C++ 5.02\ReadDataSynchro.

2. Asynchronous mode. This mode is functionally much more flexible than synchronous
mode and it is recommended to use it when organizing various algorithms for continuous
streaming data collection, when the number of entered counts exceeds 1 M per word. This
mode, for example, allows you to organize a queue of asynchronous requests on the
Windows system. So you can generate a queue of preliminary queries even immediately
before starting the data collection, but after the function STOP_ADC(). Using the query
queue can dramatically improve the reliability of data collection. The Windows operating
system is not, as they say, a real-time environment. Therefore, working in it, as it usually
happens, only at the user level, and not at the core level, you can never be completely sure
that the system at the right time will not be distracted by its own needs for a more or less
long period of time. For example, if for a collection frequency of 10 MHz after
START_ADC(), but before starting the ReadData() function, the system ‗thought for more
than 400 ms (which is very rare, but it is possible), then the failure in the data received is
almost obvious. This data failure is manifested as a data integrity violation and can be
tracked using the GET_DATA_STATE() function. However, if several (or one) preliminary
requests can be set up with the help of ReadData() just before START_ADC(), which will
be processed at the core level of the system, there will be no failures. This is because the
response time for working out some event (in our case, a request) at the core level is much
less than at the user level. So, it turns out that after performing the function
START_ADC() we already have ready-to-service requests at the core level of the system.
There are almost no delays. And now, as long as the system fulfills our preliminary
requests, you can take the time to submit one or more of the following requests as
required. It is important to understand that for each queued or already running request, the
application must have its own instance of a structure of type IO_REQUEST_LUSBAPI
with its individual event Event.

Transmitted parameters:
ReadRequest – structure of type IO_REQUEST_LUSBAPI with parameters of extraction of ADC
finished data from the module E20-10.

Returned value: TRUE – function was successfully executed;
 FALSE – failure in the function execution.

Programmer's Manual. Library Lusbapi 3.3. Rev.A3

4.5.7. Check the status of the data collection process

Format: BOOL CHECK_DATA_INTERGRITY(BYTE * const DataIntegrity)
(version 3.1 and below)

 BOOL GET_DATA_STATE(DATA_STATE_E2010 * const DataState)
(version 3.2 and higher)

Assignment:
This function allows you to get the current state of the data collection process in the structure of type
DATA_STATE_E2010. The format of the structure of DATA_STATE_E2010 is given earlier in §
4.3.7. "Structure of the DATA_STATE_E2010", and the purpose of its individual fields is
described in more detail below.

• Field DataState->ChannelsOverFlow. Read. For the E20-10 (Rev.'A') module, this field
does not carry any functional load. For E20-10 module (Rev.'B' and above) with this field,
you can get global (for all time of collection) and local (during one request) bit attributes of
the bit grid overflow. The global bit flag is activated (goes into the "1" state) when the bit grid
overflows at any of the 4 physical ADC channels for the entire time interval from
START_ADC () and up to STOP_ADC (). Each of their local bit attributes is activated (goes
into the state of the log "1") when the bitmap overflow occurs at the corresponding physical
ADC channel during the time of one ReadData() request. As the numbers of the bits used,
you can use the constants of the bit numbers of the channel overload. The meaning load
of the bits of this field is shown in the table below:

Bit
number

Constant name Intended purpose

0 OVERFLOW_OF_CHANNEL_1_E2010
Local sign of the word size overflow
of the 1st physical ADC channel.

1 OVERFLOW_OF_CHANNEL_2_E2010
Local sign of the word size overflow
of the 2nd physical ADC channel.

2 OVERFLOW_OF_CHANNEL_3_E2010
Local sign of the word size overflow
of the 3rd physical ADC channel.

3 OVERFLOW_OF_CHANNEL_4_E2010
Local sign of the word size
overflow of the 4th physical ADC
channel.

<4..6> —————— Reserved

7 OVERFLOW_E2010 Global flag for word size overflow.

E20-10 module

• Field DataState->BufferOverrun. Read. E20-10 allows you to monitor the global
sign of an overflow of the internal hardware buffer of the module. And the module
keeps track of this feature for the entire time interval from the moment START_ADC()
and up to STOP_ADC(). This information is reflected in the bit with the number 0 or
BUFFER_OVERRUN_E2010 of this structure field. The appearance of the logical
state '1' in this bit indicates that during the data acquisition time the internal buffer of
the module has overflowed. In this case, the version of the main MCU program of the
module should be 1.7 or higher. In addition, if the module detects buffer overflow
during collection with the ADC, it visually informs about this situation by flashing its
LED indicator in red (for E20-10 module (Rev.'A')) or red-green (for E20-10
module (Rev.'B' and above)).

• Field DataState->CurBufferFilling. Read. For the E20-10 (Rev.'A') module, this field
does not carry any functional load. For the module E20-10 (Rev.'B' and above), this
field contains the current occupancy of the internal hardware buffer of the module. It is
expressed in counts.

• Field DataState->MaxOfBufferFilling. Read. For the E20-10 (Rev.'A') module, this
field does not carry any functional load. For the E20-10 module (Rev.'B' and
above), this field shows which maximum occupancy of the internal hardware buffer of
the module was achieved during the entire data acquisition interval from the
START_ADC() and up to STOP_ADC(). It is expressed in counts.

• Field DataState->BufferSize. Read. For the E20-10 (Rev.'A') module, this field does
not carry any functional load. For E20-10 module (Rev.'B' and above) this field
contains the full size of the internal hardware buffer of the module. It is expressed in
counts.

• Field DataState->CurBufferFillingPercent. Read. For the E20-10 (Rev.'A') module,
this field does not carry any functional load. For module E20-10 (Rev.'B' and above),
this field shows the percentage level of the current occupancy of the internal hardware
buffer. Expressed in %.

• Field DataState->MaxOfBufferFillingPercent. Read. For the E20-10 (Rev.'A')
module, this field does not carry any functional load. For the E20-10 module (Rev.'B'
and above), this field shows what the maximum percentage level of internal hardware
buffer occupancy has been reached during the entire data collection interval from
START_ADC() and up to STOP_ADC(). Expressed in %.

Transmitted parameters:
DataState – the returned structure, with the current state of the data collection process.

Returned value: TRUE – function was successfully executed;
 FALSE – function was executed with an error.

Programmer's Manual. Library Lusbapi 3.3. Rev.A3

4.6. Functions for working with the DAC
 The hardware of the E20-10 module and, accordingly, the Lusbapi library allows you to control the
output of the data to the DAC only in asynchronous (one-time) mode. So, the output to the DAC is
obtained by a relatively slow operation, as the module does not implement hardware support for
streaming work with the DAC.
 Examples of the correct application of the interface function for working with the DAC can be found in
the directory \E20-10\Examples\Borland C++ 5.02\DacSample.

4.6.1. ADC data correction
 The circuitry and the components used ensure the linearity of the transmission characteristic of the DAC
of the E20-10 module. However, for now, the module does not know how to automatically adjust the
output to the DAC. This leads to the fact that the DAC output reading can have some mixing of zero and
inaccuracy in the transmission scale. Therefore, at the application level, it is necessary to implement the
whole tedious task of updating the DAC data. To this end, the appropriate calibration factors stored in the
service information of the module are intended. Service information together with the required
coefficients is recorded in the module at the stage when it is set up at LLC "L-Card". Due to this, there
are no trimming resistors on the module, which improves the noise characteristics of the module and
increases their reliability.
 The coefficients themselves are located in the fields Dac.OffsetCalibration[] and Dac.ScaleCalibration[]
of the structure of the service information MODULE_DESCRIPTION_E2010. These fields are arrays of
type double. For the E20-10 module, only the first DAC_CALIBR_COEFS_QUANTITY_E2010 elements
are used in each of these arrays. The Dac.OffsetCalibration array contains the coefficients for correcting
the zero offset of the first and second DAC channels, and the Dac.ScaleCalibration array for scale
correction.
 ADC data correction is performed as follows: Y = (X+A)*B, where: X – uncorrected DAC data [in DAC
codes], Y – corrected DAC data [in DAC codes], A – zero offset coefficient [in DAC codes], B – scale
factor [unsized]. For example, on the second DAC channel, it is necessary to set the voltage
corresponding to the following DAC codes: X1 = 1000, X2 = -1000, X3 = 0. Then, the adjustment
coefficients and the data for the second DAC channel can be represented as follows: A =
Dac.OffsetCalibration[1], B = Dac.ScaleCalibration[1], Y1=(A+1000)*B, Y2=(A-1000)*B, Y3=A*B.

4.6.2. Single output to the DAC
Format: BOOL DAC_SAMPLE(SHORT * const DacData, WORD DacChannel)
Assignment:
This function allows you to set the voltage on the specified channel DacChannel according to the
DacData value (in the DAC's codes). The DAC_SAMPLE() function is executed quite slowly and,
using it, you can achieve the frequency of data output to the DAC of the order of several hundred
Hz. For compliance of the DAC code with the value of the analog voltage module installed at the
output, see § 3.2.2. "Word format for DAC data"

Transmitted parameters:
 DacData – the set voltage value in the DAC codes (from -2048 to 2047).
 DacChannel – requested channel number for the DAC (0 or 1).

Returned value: TRUE – function was successfully executed;
 FALSE – function was executed with an error.

E20-10 module

4.7. Functions for working with digital lines
All input and output digital lines of the E20-10 module are located on the external connector DIGITAL
I/O. If no special EN_OE line is used at this connector, (see User Manual), by default, immediately after
the external power supply is applied to the module, the digital output lines are in high-impedance state. If
this line EN_OE is properly used, then after the power is applied, all output lines become active.
 The hardware of the E20-10 module and, accordingly, the Lusbapi library allows you to work with
digital lines only asynchronously (one-time). So, work with digital lines is obtained by a relatively slow
operation, as the module does not provide hardware support for streaming work with them.

4.7.1. Resolution of output digital lines
Format: BOOL ENABLE_TTL_OUT(BOOL EnableTtlOut)
Assignment:
This interface function allows you to control the resolution of all output lines of the external digital
DIGITAL I/O connector. So, there is a possibility of transferring them to the third (high-impedance)
state and back. If the special EN_OE line of the DIGITAL I/O connector is properly used (see User
Manual), then this function does not have any influence on the module operation.
Transmitted parameters:
EnableTtlOut – flag that controls the status of the resolution of all digital output lines.
Returned value: TRUE – function was successfully executed;
 FALSE – function was executed with an error.

4.7.2. Reading of the external digital lines
Format: BOOL TTL_IN(WORD * const TtlIn)
Assignment:
This interface function performs a single asynchronous reading of the states of all 16 input digital
lines on the external DIGITAL I/O connector. The TTL_IN() function is slow enough and, using it,
you can achieve the frequency of data entry from digital lines on the order of a few hundred Hz.
Transmitted parameters:
TtlIn – a variable containing the bit-state of the input digital lines.
Returned value: TRUE – function was successfully executed;
 FALSE – function was executed with an error.

4.7.3. Output to external digital lines
Format: BOOL TTL_OUT(WORD TtlOut)
Assignment:
This interface function establishes the installation of all 16 digital output lines on the external
DIGITAL I/O connector of the E20-10 module in accordance with the bits of the transmitted
parameter TtlOut. If necessary, the work with the digital outputs must first be enabled using the
interface function ENABLE_TTL_OUT(). The TTL_OUT() function is executed quite slowly and,
using it, it is possible to achieve a frequency of data output to digital lines of the order of several
hundred Hz.
Transmitted parameters:
TtlOut – a variable containing the bit-state of the input digital lines.
Returned value: TRUE – function was successfully executed;
 FALSE – function was executed with an error.

http://www.lcard.ru/download/e20_10_Users_Guide_en.pdf
http://www.lcard.ru/download/e20_10_Users_Guide_en.pdf
http://www.lcard.ru/download/e20_10_Users_Guide_en.pdf

Programmer's Manual. Library Lusbapi 3.3. Rev.A3

4.8. Functions for working with the user PROM

On the E20-10 module, part of the microcontroller's memory is allocated to the user's PROM. The
size of this area is USER_FLASH_SIZE_E2010 bytes. The user can safely use all this area in their purely
private property interests. 4.8.1. Permission to write to the PROM

Format: BOOL ENABLE_FLASH_WRITE(BOOL IsUserFlashWriteEnabled)
Assignment:
This interface function allows (TRUE) or disables (FALSE) the write mode in the user PROM using
the standard interface function WRITE_FLASH_ARRAY(). It should be remembered that after
completing all the required operations for writing information to the user's PROM, it is necessary to
disable the recording mode with this interface function.
Transmitted parameters:
EnableFlashWrite – a variable can take the following values:
  if TRUE, then the writing mode in the user PROM is allowed,
  if FALSE, then the writing mode in the user PROM is forbidden.
Returned value: TRUE – function was successfully executed;
 FALSE – function was executed with an error.

4.8.2. Data writing to the PROM
Format: BOOL WRITE_FLASH_ARRAY(USER_FLASH_E2010 * const UserFlash)
Assignment:
This interface function writes a byte array size USER_FLASH_SIZE_E2010 to the PROM. So, the
entire accessible area of the user PROM is overwritten immediately. Before starting the write
procedure in the user's PROM, you must enable this operation using the interface function
ENABLE_FLASH_WRITE(). After finishing the procedure of writing all the required information,
you must disable the recording mode with the same function ENABLE_FLASH_WRITE().
Transmitted parameters:
UserFlash – in fact, this is a byte array that must be written to the user's PROM.
Returned value: TRUE – function was successfully executed;
 FALSE – function was executed with an error.

4.8.3. Data reading from the PROM
Format: BOOL READ_FLASH_ARRAY(USER_FLASH_E2010 * const UserFlash)
Assignment:
This interface function reads the contents of the entire area of the user PROM.
Transmitted parameters:
UserFlash – in this byte array, the image of the entire user PROM is returned.
Returned value: TRUE – function was successfully executed;
 FALSE – function was executed with an error.

E20-10 module

4.9. Functions for working with service information

The service information contains the most general data about the E20-10 module used: the name of
the module, its serial number and revision, the adjustment coefficients for the ADC and DAC, the
versions of the FPGA and MCU firmware used, the clock frequencies of the actuators (FPGA, MCU), and
so on. Some data from this service information is needed by the functions of the regular Lusbapi
library for its correct operation. 4.9.1. Reading service information

Format: BOOL GET_MODULE_DESCRIPTION(
MODULE_DESCRIPTION_E2010 * const ModuleDescription)

Assignment:
This interface function reads all the service information into a structure of type
MODULE_DESCRIPTION_E2010. This information is required when working with some of the
interface functions of the regular Lusbapi library. Therefore, this function, in order to avoid
unpredictable behavior of applications, should be called immediately after loading the FPGA
module and verifying its operability (see
§ 4.1. "General principles of working with the module")
Transmitted parameters:
ModuleDescription is a pointer to a structure of type MODULE_DESCRIPTION_E2010, into which
all the service information of the module is read.
Returned value: TRUE – function was successfully executed;
 FALSE – function was executed with an error.

4.9.2. Service information writing
Format: BOOL SAVE_MODULE_DESCRIPTION(

MODULE_DESCRIPTION_E2010 * const ModuleDescription)
Assignment:
This interface function allows storing in the module all the service information from a structure of
the type MODULE_DESCRIPTION_E2010. !!!Attention!!! Use this function only in case of
emergency. For example, when, for one reason or another, the contents of the official information
deteriorated.
Transmitted parameters:
ModuleDescription – a pointer to a structure of type MODULE_DESCRIPTION_E2010, from which
the service information is transferred to the module.
Returned value: TRUE – function was successfully executed;
 FALSE – function was executed with an error.

Programmer's Manual. Library Lusbapi 3.3. Rev.A3

Annex A. AUXILIARY CONSTANTS AND TYPES

 Auxiliary constants and types data are described in a header file
\DLL\Include\LusbapiTypes.h and considered in the sections below.

A.1. Constants
 The auxiliary constants defined in the Lusbapi library are listed in the following table:

Name Value Meaning

NAME_LINE_LENGTH_LUSBAPI 25

The length of the line with the name of
something. For example, the name of the
manufacturer or product, the name of the
author, etc.

COMMENT_LINE_LENGTH_
LUSBAPI 256

The length of the line with the comment in
some auxiliary structure.

ADC_CALIBR_COEFS_QUANTITY_
LUSBAPI 128

The maximum possible number of ADC
adjustment coefficients.

DAC_CALIBR_COEFS_QUANTITY_
LUSBAPI 128

The maximum possible number of DAC
adjustment coefficients.

A.2. Structure of the VERSION_INFO_LUSBAPI
 The auxiliary structure of the VERSION_INFO_LUSBAPI contains more or less detailed information
about the software running in any executive device: MCU, DSP, PLD, etc. This structure is described as
follows: struct VERSION_INFO_LUSBAPI
{
 BYTE Version[10]; // version of the software for the executive device
 BYTE Date[14]; // software assembly date
 BYTE Manufacturer[NAME_LINE_LENGTH_LUSBAPI]; // software manufacturer
 BYTE Author[NAME_LINE_LENGTH_LUSBAPI]; // software author
 BYTE Comment[COMMENT_LINE_LENGTH_LUSBAPI]; // comment string };

A.3. Structure of the MCU_VERSION_INFO_LUSBAPI
 The auxiliary structure of the MCU_VERSION_INFO_LUSBAPI consists of two structures
VERSION_INFO_LUSBAPI and contains information about the software of the executive device, which
includes information about the firmware of both the main program (Firmware) and the bootloader
(Bootloader). This structure is described as follows:

struct MCU_VERSION_INFO_LUSBAPI
{
 VERSION_INFO_LUSBAPI FwVersion; // main program version (Firmware)
 VERSION_INFO_LUSBAPI BlVersion; // bootstrap version (BootLoader)
};

E20-10 module

A.4. Structure of the MODULE_INFO_LUSBAPI
This auxiliary structure of the MODULE_INFO_LUSBAPI contains the most general information

about the module: the name of the manufacturer of the product, the name of the product, the serial number
of the product, the product revision and the comment line. This structure is described as follows:

struct MODULE_INFO_LUSBAPI
{
 BYTE CompanyName[NAME_LINE_LENGTH_LUSBAPI]; // name of the manufacturer

// of the product
 BYTE DeviceName[NAME_LINE_LENGTH_LUSBAPI]; // product name
 BYTE SerialNumber[16]; // product serial number
 BYTE Revision; // product revision
 BYTE Modification; // execution (option) of the module;
 BYTE Comment[COMMENT_LINE_LENGTH_LUSBAPI]; // comment line
};

A.5. Structure of the INTERFACE_INFO_LUSBAPI
 The auxiliary structure of the INTERFACE_INFO_LUSBAPI contains the most general information about
the interface used to access the module. This structure is described as follows:

struct INTERFACE_INFO_LUSBAPI
{
 BOOL Active; // the validity flag of the rest of the structure fields
 BYTE Name[NAME_LINE_LENGTH_LUSBAPI]; // interface name
 BYTE Comment[COMMENT_LINE_LENGTH_LUSBAPI]; // comment line
};

A.6. Structure of the MCU_INFO_LUSBAPI
 The auxiliary structure of the MCU_INFO_LUSBAPI contains the most general information about the
operating device used, such as a microcontroller (MCU). This structure is described as follows:
template <class VersionType> struct MCU_INFO_LUSBAPI
{
 BOOL Active; // confidence flag of the rest of the structure fields
 BYTE Name[NAME_LINE_LENGTH_LUSBAPI]; // MCU name
 double ClockRate; // MCU clock frequency in kHz
 VersionType Version; // information about Firmware and BootLoader
 BYTE Comment[COMMENT_LINE_LENGTH_LUSBAPI]; // comment line };

A.7. Structure of the PLD_INFO_LUSBAPI
 The auxiliary structure of the PLD_INFO_LUSBAPI contains the most general information about the
operating device used such as a programmable logic integrated circuit (FPGA). This structure is described
as follows: struct PLD_INFO_LUSBAPI
{
 BOOL Active; // the validity flag of the remaining fields of the structure
 BYTE Name[NAME_LINE_LENGTH_LUSBAPI]; // FPGA name

Programmer's Manual. Library Lusbapi 3.3. Rev.A3

 double ClockRate; // clock frequency kHz
 VERSION_INFO_LUSBAPI Version; // information about FPGA firmware
 BYTE Comment[COMMENT_LINE_LENGTH_LUSBAPI]; // comment line
};

A.8. Structure of the ADC_INFO_LUSBAPI
 The auxiliary structure of the ADC_INFO_LUSBAPI contains the most general information about the
device used in the ADC type. This structure is described as follows: struct ADC_INFO_LUSBAPI
{
 BOOL Active; // the validity flag of the remaining fields of the structure
 BYTE Name[NAME_LINE_LENGTH_LUSBAPI]; // ADC name
 double OffsetCalibration[ADC_CALIBR_COEFS_QUANTITY_LUSBAPI];
 // zero offset adjustment coefficients for ADC
 double ScaleCalibration[ADC_CALIBR_COEFS_QUANTITY_LUSBAPI];
 // adjustment coefficients of the ADC scale
 BYTE Comment[COMMENT_LINE_LENGTH_LUSBAPI]; // comment line

};

A.9. Structure of the DAC_INFO_LUSBAPI
 The auxiliary structure of the DAC_INFO_LUSBAPI contains the most general information about the
device used for the DAC type. This structure is described as follows: struct DAC_INFO_LUSBAPI
{
 BOOL Active; // validity flag of the rest of the structure fields
 BYTE Name[NAME_LINE_LENGTH_LUSBAPI]; // DAC name
 double OffsetCalibration[DAC_CALIBR_COEFS_QUANTITY_LUSBAPI];
 // zero offset adjustment coefficients for ADC
 double ScaleCalibration[DAC_CALIBR_COEFS_QUANTITY_LUSBAPI];
 // adjustment coefficient of the DAC scale
 BYTE Comment[COMMENT_LINE_LENGTH_LUSBAPI]; // comment line

};

A.10. Structure of the DIGITAL_IO_INFO_LUSBAPI
 The auxiliary structure of the DIGITAL_IO_INFO_LUSBAPI contains the most general information
about the digital I/O devices used. This structure is described as follows:

struct DIGITAL_IO_INFO_LUSBAPI
{
 BOOL Active; // the validity flag of the rest of the structure fields
 BYTE Name[NAME_LINE_LENGTH_LUSBAPI]; // digital microcircuit name
 WORD InLinesQuantity; // number of the input lines
 WORD OutLinesQuantity; // number of the outline lines
 BYTE Comment[COMMENT_LINE_LENGTH_LUSBAPI]; // comment string
};

	1. Introduction
	2. General information
	2.1. What's new?
	2.2. Connecting the E20-10 module to a computer
	2.3. Library Lusbapi
	2.4. Microcontroller module
	2.5. Module loading
	2.6. Possible problems with the module

	3. Used terms and data formats
	3.1. Terms
	3.2. Data formats

	4. Description of the Lusbapi library
	4.1. General principles of working with the module
	4.2. Constants
	4.3. Structures
	4.4. General functions
	4.5. Functions for working with ADC
	4.6. Functions for working with the DAC
	4.7. Functions for working with digital lines
	4.8. Functions for working with the user PROM
	4.9. Functions for working with service information
	A.1. Constants
	A.2. Structure of the VERSION_INFO_LUSBAPI
	A.3. Structure of the MCU_VERSION_INFO_LUSBAPI
	A.4. Structure of the MODULE_INFO_LUSBAPI
	A.5. Structure of the INTERFACE_INFO_LUSBAPI
	A.6. Structure of the MCU_INFO_LUSBAPI
	A.7. Structure of the PLD_INFO_LUSBAPI
	A.8. Structure of the ADC_INFO_LUSBAPI
	A.9. Structure of the DAC_INFO_LUSBAPI
	A.10. Structure of the DIGITAL_IO_INFO_LUSBAPI

