
ltrapi library
Programmer Manual

Multichannel data-acquisition systems

DAQ SYSTEMS DESIGN, MANUFACTURING & DISTRIBUTION

http://en.lcard.ru
en@lcard.ru

Revision 2.0.1
November 2016

http://en.lcard.ru
mailto:en@lcard.ru

1

Authors of the manual:
A.V. Kodorkin, A.S. Emelyanov, Alexey Borisov

L-Card LLC
117105, Moscow, Varshavskoye shosse, 5, block 4, bld. 2

tel.: +7 (495) 785-95-19
fax: +7 (495) 785-95-14

Internet contacts:
http://en.lcard.ru

E-Mail:
Sales department: en@lcard.ru
Customer care: en@lcard.ru

LTR Crate System© Copyright 2016, L-Card LLC. All rights reserved.

mailto:borisov@lcard.ru
http://en.lcard.ru/
mailto:en@lcard.ru
mailto:en@lcard.ru

2

Table 1: Current document revisions

Revision Date Description
1.0.0 23.01.2006 The first revision available for user.
1.0.1 23.04.2006 Time labels description is added.

1.0.2 25.07.2006 The function
LTR_SetServerProcessPriority is added

1.0.3 02.04.2007 Multithreading operation features are stated

1.0.4 23.04.2007

More detailed description of the
LTR_WARNING_MODULE_IN_USE warning is
added and
examples are changed

1.0.5 04.05.2008 The description of the function
LTR_GetCrateRawData is added

1.0.6 04.09.2008 The examples for the function
LTR_GetCrateRawData are added

1.0.7 05.09.2008 The description of LTR_GetCrateRawData and
TLTR structure flags is added

1.0.8 03.09.2009

The text was corrected, the description of the
function LTR_GetCrateInfo is added, the
constant and structure list is complemented, the
description of the synchronization and switching
function for the LTR-EU crate-controllers service
signals

1.0.9 11.01.2010

The descriptions of new API functions are added
— control of the server and connections with IP
crates from the application program. The
paragraph "Network security consideration" is
added.

1.0.10 31.03.2010 The description of the function
LTR_GetServerVersion is added

2.0.0 14.10.2016
The description is modified. Changes in the
"Distinguishing features of the document
second version" section are described

2.0.1 07.11.2016

The description of the flag
LTR_CRATE_IP_FLAG_RECONNECT for IP-
writing and the flag
LTR_GETCRATES_FLAGS_WORKMODE_ONLY
of the function of acquisition of
connected crates information is added

3

Contents

Chapter 1 ..6

What this document is about ...6

Chapter 2 ..7

Distinguishing features of the document second version ...7

Chapter 3 ..9

Installation and connection of the library to the project ...9

Chapter 4 ... 10

Common approach to operation with the library ... 10

4.1 Functions call sequence .. 10

4.2 Types of client connections .. 11

4.2.1 Control connection with the service ltrd .. 11

4.2.2 Control connection with the crate ... 11

4.2.3 Connection with the specific module .. 12

4.3 Multiple connection .. 12

4.4 Acquisition of the list of connected crates and modules 13

4.5 Format of IP-address assignment... 14

4.6 Synchro-labels ... 14

4.6.1 Receiving and comparison of the synchro-labels with data 15

4.6.2 Synchronization of several crates ... 16

Chapter 5 ... 18

Constants, types of data and library functions ... 18

5.1 Constants and tabulations. ... 18

5.1.1 Constants and macro definitions... 18

5.1.2 Error codes. .. 20

5.1.3 Crate's processor client outputs connection mode.. 23

5.1.4 Operating mode of the crate's DIGOUTx outputs. .. 23

5.1.5 Synchro-label generation mode. ... 24

5.1.6 Level of history log output by the service ltrd. .. 25

5.1.7 Flags of the functions of acquisition of data on the connected crates. .. 25

5.1.8 Adjustable parameters of the service ltrd. .. 26

5.1.9 Numbers of channels for connection with the service ltrd 27

4

5.1.10 Indicators of the communication channel ltrd for definite crate interface
setting up 28

5.1.11 Additional flags of the channel for communication with ltrd 28

5.1.12 Connection status flags ... 28

5.1.13 Modules' identifiers ... 28

5.1.14 Crate types ... 29

5.1.15 Crate connection interface .. 29

5.1.16 Status of connection with the crate that corresponds to the entry with IP-
address .. 30

5.1.17 Flags corresponding to the entry with crate's IP-address 30

5.1.18 Flags from the module description ... 31

5.1.19 Crate operation mode .. 32

5.1.20 FPGA status .. 32

5.2 Data types .. 33

5.2.1 Connection descriptor. ... 33

5.2.2 Configuration of the synchronization connector lines. 34

5.2.3 Information on the type and interface of crate connection 35

5.2.4 Entry with the crate IP-address ... 35

5.2.5 Crate statistics ... 36

5.2.6 Module statistics.. 38

5.2.7 Information on the crate and its firmware.. 40

5.3 Function .. 41

5.3.1 Functions of initialization and working with connection 41

5.3.1.1 Initialization of the connection descriptor ... 41

5.3.1.2 Connection opening ... 41

5.3.1.4 Opening of the control connection with the crate 42

5.3.1.5 Opening of the connection with the set time-out 43

5.3.1.6 Closing of connection .. 44

5.3.1.7 Check if the connection is opened .. 44

5.3.2 Information type functions ... 45

5.3.2.2 Acquisition of serial numvers of the connected crates 45

5.3.2.3 Acquisition of the information on the connected crates 46

5.3.2.4 Acquisition of the crate description .. 47

5.3.2.5 Acquisition of the statistics on the crate ... 48

5.3.2.6 Acquisition of the statistics on the module ... 48

5.3.3 Crates control functions .. 49

5

5.3.3.1 Acquisition of the list of modules in the crate.. 49

5.3.3.2 Obtaining of the information on the type and interface of crate
connection 49

5.3.3.3 Configuration of the crate synchronization connector lines 50

5.3.4 Functions of ltrd service control .. 52

5.3.4.2 Setting of the history log level... 53

5.3.4.3 Acquisition of the current history log level ... 53

5.3.5 Control functions for crate connection over Ethernet 56

5.3.5.1 Acquisition of the entries list with crate IP-addresses 56

5.3.5.2 Adding of the entry with crate IP-address .. 57

5.3.5.3 Deleting of the entry with crate IP-address ... 58

5.3.5.4 Setting up of the connection with the crate using IP-address 59

5.3.5.5 Breaking of the connection with the crate using IP-address 60

5.3.5.6 Setting up the connection with all crates with auto-connection attribute
 60

5.3.5.8 Configuration of the flags for entry with the crate IP-address 61

5.3.6 Functions of data exchange with modules.. 62

5.3.6.1 Data receiving from the module ... 62

5.3.6.2 Data transmission to the module .. 63

5.3.6.3 Reading of the time of the last second label. .. 63

5.3.7 Auxiliary functions .. 64

5.3.7.1 Acquisition of the text error message .. 64

5.3.7.2 Timeout default setup for connection .. 64

6

Chapter 1

What this document is about
This document is mainly intended for the programmers who are going to code for PC

for operation with LTR crates using libraries, provided by L-Card Company.
The document assumes that the user has read the document "Starting operating the

LTR crate system. Software issues.” and “Software for the LTR system”, where the main
operating principles of the software for LTR crates are described. Also the document
assumes that the user has read the document “LTR crating system. User Manual”.

This document contains description of the only library from the library set for work
with LTR - the base library for work with LTR crates, file of which is called ltrapi (as the
common library set). In this library common control functions for work with the service
ltrd, crate control functions and function of acquisition of the information on the
connected crates and modules are contained. Also this document describes some typical
principles of work with LTR crates that are common for all modules. With that this
document does not contain descriptions of the functions for work with the specific
modules as for each module its own designated library with the name ltrXXXapi (where
XXX — module number) is provided, that uses function of the base library, and for each
library there is its own document ltrXXXapi.pdf with the detailed description of all
functions and types of these libraries.

The library itself is written in C language and all function and type declarations are
provided in C language. However, all bindings to all other software languages are only
envelopes over other C libraries and all functions, types and parameters save their values
for other software languages. Therefore this document is useful for users that code in
other software languages.

http://www.lcard.ru/download/ltr_soft_getting_started_en.pdf
http://www.lcard.ru/download/ltr_soft_getting_started_en.pdf
http://en.lcard.ru/download/ltr_cross_sdk_en.pdf
http://en.lcard.ru/download/ltr_en.pdf

7

Chapter 2

Distinguishing features of the document
second version

This document is the second one, significantly modified version of the descriptions of
the library ltrapi. This version contains upgraded information taking into account
substitution of the previously used LTR Server program for the service ltrd, capabilities of
application of the libraries not only for OS Windows, and includes amendments
(compatible with the older versions of the libraries), made in the library version 1.31.x
with respect to the library version 1.27.x, to which the first version of the document
belongs.

Also, the description of the common approach is modified, and in places the working
principle of several functions is more detailed. General description considers some
additional issues, including the description of the client connection types with indication
of what functions are applicable to what type, the description of the principle of working
with synchro-labels, etc.

The following can be noted in the changes associated with newer versions of the
libraries:

• All constants and types used in this document have prefix LTR_ or TLTR_,
respectively, in order to avoid mix-up with names of other libraries. Old constants
and types without prefixes are remained in the library for reverse compatibility and
saved in the separate header file “ltrapi_compat_defs.h”, that is ON by default, but,
if necessary, can be distinctly disabled by the definition
LTRAPI_DISABLE_COMPAT_DEFS.

• Auxiliary functions are added for more convenient opening of the control connection
of the required type — LTR_OpenSvcControl() and LTR_OpenCrate().

• Description of new function working only with ltrd, that were not supported by the
LTR Server program (stated in the function description) is added.

• New error codes are added, including generic codes that are the same for all
modules. Modules' libraries use, first of all, these generic codes from ltrapi and
retrieve the same error in the same situations instead of defining their own code in
each module for the same cases. Besides, some functions return the error code that
in more details indicates the error cause rather than the function where error has
occurred (as upper level application already knows what function has returned an
error).

• Library behavior in case of attempt to open the connection with the module,
connection with which has been already opened, is changed. Now it does not lead
to disruption of the first connection, however, re-opened connection has limited
capabilities and may not enable to work with the module appropriately. For forced

http://en.lcard.ru/download/ltrapi_v1.pdf
http://www.lcard.ru/download/ltrapi_v1.pdf

8

reset of the first connection the function LTR_ResetModule() has been introduced.
More detailed description is provided in the section Multiple connection.

• Infrequently-accessed functions, that were not implemented in ltrd as there are no
clients needs for them, were deleted from the description. With that the functions
are remained in the library for reverse compatibility. These functions are:

– LTR_GetCrateRawData()

– – LTR_SetServerProcessPriority()

– – LTR_GetServerProcessPriority().

• Also, the functions that were introduced, but actual operation of which was not
supported by LTR crates, are deleted (with that the functions are remained in the
library for reverse compatibility).

– LTR_GetIPCrateDiscoveryMode()
– LTR_SetIPCrateDiscoveryMode()

9

Chapter 3

Installation and connection of the library
to the project

Application of the libraries for working with the LTR crate system is described in the
document “Starting operating the LTR crate system. Software issues”.

http://en.lcard.ru/download/ltr_soft_getting_started_en.pdf

10

Chapter 4

Common approach to operation with the
library
4.1 Functions call sequence

When working with the LTR crate system via the library ltrapi the library functions do
not work directly with the crates or the modules. Instead, they use the service ltrd, that
performs interaction with the crates, establishing the client connection with the service
that can be already related to the specific module or crate.

To describe the client connection the structure TLTR, hereafter referred to as the
connection descriptor, is used, with which almost all functions of the give library are
executed. The program can have several connections with ltrd and for each parallel
connection it is necessary to create its own connection descriptor (instance of the TLTR
structure).

Thus, before execution of any operations, firstly, it is necessary to establish the client
connection and after their execution this connection should be closed.

Consequently, the typical call sequence is as follows:

1. Create the instance of the TLTR structure and initialize it calling the function
LTR_Init().

2. Establish the connection with ltrd by one of two ways

• calling the function LTR_OpenSvcControl() or LTR_OpenCrate() depending on
the connection type.

• or fill in the respective fields of the TLTR structure manually and call
LTR_Open()

3. Calling of the control functions or data exchange with the module

4. Upon completion of operation close the connection using LTR_Close()

Possible actions when the connection is established depend on the connection type.
Connection types are detailed in the following section.

The client connection between the user program and the service ltrd is implemented
via sockets. It enables to establish connection from the application to the service ltrd run
on another computer if necessary. Due to this fact connection opening functions use the
parameters that state the address of the computer with the service ltrd and the TCP port
for connection (when using LTR_Open() these data are set via the fields of the connection
type descriptor saddr and sport). In standard mode, when the service and the program
are run in the same computer, and default TCP port is used, as an address the constant
LTRD_ADDR_DEFAULT is used, and as a port — LTRD_PORT_DEFAULT.

11

4.2 Types of client connections
Three types of client connections can be specified:

• control connection with the service ltrd

• control connection with the crate

• connection with the specific module

4.2.1 Control connection with the service ltrd
To open the connection the function LTR_OpenSvcControl() is used. Also, for this

purpose the function LTR_Open() can be used, previously setting up the channel number
in the field cc equal to LTR_CC_CHNUM_CONTROL, and the field csn should be filled in
with the special line LTR_CSN_SERVER_CONTROL.

Connection of this type can be implemented even if there are no crates connected.
Using this connection the control functions described in the following sections can be

executed:

• Information type functions

• Functions of ltrd service control

• Control functions for crate connection over Ethernet

4.2.2 Control connection with the crate
To open the connection of this type the function LTR_OpenCrate() is used. Also, for

this purpose the function LTR_Open() can be used, previously setting up the channel
number (field cc) equal to LTR_CC_CHNUM_CONTROL and fill in the field csn with the
crate serial number (or an empty line, if it is necessary to establish connection with the
first crate).

To establish this type of connection there must be at least one connected crate (at
least one crate in the list of active crates of the service ltrd).

This connection enables to execute commands described in the section Crate control
functions. Technically, all commands of the control connection with ltrd can be executed
via this connection, however, the respective connection is more suitable for this purpose
as it does not require mandatory availability of the connected crate.

To determine with what crate this connection will be related, it is usually enough to
indicate the crate serial number (or an empty line it the crate is always the only one).
However, single crate can be simultaneously connected via two interfaces, e.g. if the
crate is configured for operation over Ethernet and connected via this interface, but also
connected over USB in the set-up mode. Due to this fact, generally, connection to the
crate is determined by two parameters - crate serial number and crate connection
interface. Without distinct indication of the interface the connection will be related to the
crate using the interface that is the operating one for the crate, i.e. via the interface that
can exchange data with the crate modules that is necessary for majority of programs.
However, if necessary, crate connection interface can be distinctly indicated using the
parameter of the function LTR_OpenCrate() or using the flags en_LTR_CC_Iface of the
field cc when using LTR_Open().

12

4.2.3 Connection with the specific module
Connection of this type is implemented using the function LTR_Open(), with the

information on the crate with the required module, previously filled in the TLTR structure,
similar to the control connection with the crate, but with the crate slot number indicated
in the field cc (instead of LTR_CC_CHNUM_CONTROL), where the required module is
inserted, using the values from LTR_CC_CHNUM_MODULE1 to
LTR_CC_CHNUM_MODULE16.

Via this connection the client exchanges data with the module over the designated
protocol of this module using the functions from the section Functions for data exchange
with the modules.

However, the user usually does not need to distinctly open this connection via
LTR_Open() and operate using the functions ltrapi, as for work with the modules the
designated libraries with their own functions, that use the function ltrapi inside
themselves, are used.

4.3 Multiple connection
In case of the control connections the client can simultaneously open several

connections both with the service and with the crates (both with one crate and with
multiple crates). Each new connection does not depend on the previous one and enables
to execute any set of function available for this connection type.

A different situation arises with the connections for work with the specific modules.
Although the service ltrd enables to establish several connections with a single module
simultaneously, but the protocol of working with the modules is so that for correct working
with the specific module only one connection must be established at a time.

When tying to open the connection with the module with which the client connection
has been already established (from this or other program), the connection opening
function returns an error LTR_WARNING_MODULE_IN_USE.

Processing of this situation by the libraries is changed in the later versions of ltrapi in
comparison with the version 1.27.

In the version 1.27 and earlier versions the connection opening function returned this
error, however, executed all actions including complete reset and initial initialization of
the module. It enabled to work with the module the same way as if there was no first
connection, but only provided that no commands that could disturb the sequence of
operation with the module, were sent over the first connection. In this situation this
warning could be completely ignored and it was possible to work with the module as if
opening was successful. However, the problem of this option is as follows: if the first
connection is actually used and data acquisition is in progress, an attempt to re-establish
the connection (possibly, from other program that knows nothing about the first
connection) will lead to disturbance of data acquisition for the first connection and,
moreover, does not ensure proper operation of the second connection if the first one is
not closed. Particularly, starting the program that firstly finds all modules and receive on
formation from them leads to disturbance of all other programs.

In the versions after the version 1.27 module reset and transmitting of any other
commands to the module are not executed when opening the connection with the module
if there already is the opened connection with this module. I.e. it does not disturb
operation of the first connection, but the module for the second connection is in unknown

13

status and, besides, operations from the opening function that are specific to the modules
(e.g. for the modules, where information is read from the flash-memory during connection
opening, the information will not be read) turns to be not executed. Thus, in the current
version of ltrapi, if the connection opening function returned an error
LTR_WARNING_MODULE_IN_USE, this connection can be used only for the limited set of
tasks, and in case of normal operation it is recommended to consider this warning as an
error and to close the connection as in case of any other error. In this case starting of
the program described in the previous example will lead to the situation when the
program can not read information on the modules with which operating connections are
already opened, but operation of the previously run programs will not be disturbed. And
if it is necessary to open new connection reseting another connection you can use the
function LTR_ResetModule() using the control connection with the service ltrd.

4.4 Acquisition of the list of connected crates and modules
The functions of ltrapi enable to obtain the list of crates with which the service ltrd

established the connection, that is called as the list of active crates of the service ltrd.
With that the service itself adds all found and successfully initialized crates connected via
the USB interface, to this list, while connection to the crates over Ethernet is implemented
using the configured entries with the IP-addresses of the crates, function for working with
which are described in the section Control functions for the crates connected over
Ethernet.

The list of active crates can be obtained via the control connection with the service
ltrd, while to obtain the list of crate modules it is necessary to establish the control
connection with the respective crate. Thus, call sequence to obtain the full list of active
crates and modules can look as follows:

1. Create the instance of the TLTR structure and initialize it calling the function
LTR_Init().

2. Establish the control connection with the service ltrd using the function
LTR_OpenSvcControl().

3. Obtain the list of the serial numbers of all active crates using the function
LTR_GetCrates() or LTR_GetCratesEx().

4. For each valid serial number of the crate obtained from the list perform the following
actions:

• Create a new instance of the TLTR structure and initialize it calling the
function LTR_Init().

• Establish the control connection with the crate, with the current serial
number from the list calling LTR_OpenCrate()

• Obtain the list of modules in the crates calling LTR_GetCrateModules()
• Close the control connection with the crate using LTR_Close()

5. Close the control connection with the service ltrd, calling LTR_Close() for the
connection descriptor, generated at step 1.

14

4.5 Format of IP-address assignment
IP-addresses (hereafter, IP-address means the address for the IP protocol of the

version 4, that is supported by the crates and libraries) are used both for crate connection
via Ethernet interface (crate IP-address), and when establishing the client connection to
the service ltrd, run on the remote computer (IP-address of the computer with the service
ltrd).

IP address in the textual view is four digits from 0 to 255, divided by points, e.g.
“192.168.1.12”. To generate IP-addresses a 32-bit number (DWORD type) is usually used
in the functions and the structures of this library (and in other libraries associated with
ltrapi). Each bit of this number sets one digit from the textual entry, respectively. With
that the number high-order byte corresponds to the first digit and the lower-order byte
corresponds to the last digit.

Thus, for the address “a.b.c.d” 32-bit the number will be determined as
(a << 24) | (b << 16) | (c << 8) | d. E.g. to set up the number 192.168.1.12 the
parameter value in hexadecimal form will be equal to 0xC0A8010C.

4.6 Synchro-labels
Synchro-labels is the common mechanism of LTR crate synchronization that is

described in the section "Synchronization principle of data acquisition in the LTR system”
of the user manual. The common principle consists in that the special labels can be
inserted to the total data flow from the crate. Due to the fact that data from all modules
are sent in total flow in the order in which they entered the crate, using the position of
the label for each module on the receiving side it is possible to determine between which
module's counts the event occurred that corresponds to this label.

E.g. this mechanism enables to bind the following data to the accuracy up to one
sampling period of the module:

• data from different modules of the same crate relative to each other

• data from different modules of different crates if crates are connected through the
synchronization connector and label generation according to the "master-slaves"
principle is used.

• data from different modules of one or more crates to external events if label
generation from the external signal connected to the crate synchronization
connector is used.

Two types of the synchro-labels are used in the LTR system - "START" label and
"SECOND" label. Labels' names show their initial designation at initial generation,
however, in case of generation from the external signal their designation can be random
and they can only be considered as the binding to two different types of synchronization
events.

Labels can be inserted to the flow either with the special modules (LTR41, LTR42,
LTR43), or the crate itself, if it supports this mechanism (it is supported in the crates LTR-
EU, LTR-CEU, LTR-CU). Also, in incomplete form the synchro-labels are supported by the
crate LTR-U-1-4, however, label generation capabilities in this crate and accuracy of their
binding to the data are limited, and if application of the synchro-labels is required in a
single-place crate, it is recommended to use crates LTR-CEU-1 or LTR-CU-1.

http://en.lcard.ru/download/ltr_en.pdf

15

The functions for configuring labels generated by the modules are described in
programmer manuals for this modules. The functions for configuring the labels generated
by the crates are implemented in ltrapi and described in this document. The exception is
the crate LTR-U-1-4, for which the functions for configuring the labels are implemented
in the library ltr021api and are not considered in this document.

Configuring the crate label generation is performed via the control connection with the
crate using the functions LTR_MakeStartMark(), LTR_StartSecondMark() and
LTR_StopSecondMark(). For label translation to the synchronization connector outputs it
is also necessary pre-configure synchronization connector lines via LTR_Config().

4.6.1 Receiving and comparison of the synchro-labels with data
The service ltrd receives the synchro-labels in the data flow from the crate and counts

their total number starting from the moment of crate connection by the service ltrd. When
receiving the data from the module using the function LTR_Recv() the information on
synchro-labels occurrence moment with their counter (in the libraries of the specific
modules their own function to receive data is used, however, its operating principle and
parameters are similar to the parameters of the function LTR_Recv()) is also received. As
a result, the function LTR_Recv() forms a separate array tmark from 32-bit words on the
basis of this information, if necessary. Each word of this array corresponds to the word
received from the module with the same element number in the array and contains
information on the counters of the synchro-labels at the time moment that corresponds
the given module word. Every 32-bit word of tmark contains "START" label counter in the
high-order half, and "SECOND" label counter in the lower-order half as shown in the table.

Bit number Value
Bits 31-16 Quantity of "START" labels, generated prior to receiving of the

respective word by the crate
Bits 15-0 Quantity of "SECOND" labels, generated prior to receiving of the

respective word by the crate

Consequently, using the moment of counter change it is possible to determine

between which words from the module a synchronization event has occurred. E.g. if 10
words are received from the module, and time of synchro-label generation corresponds
to the time between 4th and 5th word, and N is a quantity of synchro-labels of the given
type, received prior to the first word, in the first 4 elements of the array mark the counter
of the synchro-labels of the given type will be indicated, that is equal to N, and in other
6 elements - N + 1.

Insert of synchro-labels to the data flow and, respectively, synchro-label binding to
the module data are performed on the crate level when receiving words from the module
(prior to buffering), i.e. technically, synchro-label counter change between two module
words means that the synchronization event occurred after the crate had received the
first word but prior to receiving of the second word. For more accurate binding of the
data from different types of modules it is also necessary to consider delays caused by the
module itself, e.g. if the A/D converter with the filter is used, you should consider delay
of this filter. These delays are fixed for specific settings of the specific module and can
be obtained, for example, experimentally for the respective case.

16

Also, it should be noted, that as the synchro-label counter starts from the
establishment of the connection of the service ltrd with the crate and is not related to the
client connections with the modules, by the time of acquisition start synchro-labels
counters' values can differ from zero if labels were received from the crate prior to
working with the module. Also, it should be noted that the counters' value itself for the
words, that correspond to the same time, is the same for all modules of the same crate
but can differ for modules from different crates. Respectively, it is necessary to consider
different initial values of the counters when starting and to bind to their changes but not
to absolute value.

4.6.2 Synchronization of several crates
Synchronization of these modules from several crates using synchro-labels is possible

for the crates with the connector SYNC (LTR-EU, LTR-CEU, LTR-CU), or if there are
modules in the crate that can generate labels. In this document only the first option is
considered. When using the special modules to generate labels the principle is the same,
but it uses modules' functions, that are not related to this document, for setting up.

With that, both synchronization of several crates between each other according to the
principle "Master - Slaves" and synchronization using the external signal (in this case all
crates are configured as "slave") are possible. For this purpose it is necessary to connect
one of the DIGOUT lines of the synchronization connector of the master crate with one
of the DIGIN lines of the synchronization connector of each slave crate (in case of
synchronization using the external signal - connect this signal to one of the DIGIN lines
of all crates to be used). If both labels are used, for each label the individual input of the
master crate and the individual input of the slave crates must be used for each label.
Electrical issues of this connection are not considered in this manual. The issue of correct
application of the functions of this library when using this synchronization is described
below.

Let's consider the option of synchronization according to the principle “Master --
Slaves” as an example of configuration. With that assume that the DIGOUT1 output of
the master crate is connected with
DIGIN1 of all slave crates and used for "START" label, and the DIGOUT2 output of the
master crate — with DIGIN2 of the slave crates and used for "SECOND" label.

General sequence of configuration is as follows:

1. At the initial moment synchro-label generation in all involved crates must be OFF.
If it is not possible, it is necessary to switch OFF synchro-label generation for each
involved crate, calling the following through the control connection with each crate:

• LTR_MakeStartMark() with indication of the mode LTR_MARK_OFF to switch
“START” label generation OFF

• LTR_StopSecondMark() to switch “SECOND” label generation OFF

2. Configuration of the DIGOUT outputs of the master crate synchronization connector.
For this purpose call the function LTR_Config() for the control connection with the
master crate, having transferred the structure TLTR_CONFIG, filled in as follows:

• in the field digout_en the value 1 is set
• in the field digout[0] the value LTR_DIGOUT_START is set
• in the field digout[1] the value LTR_DIGOUT_SECOND is set

17

3. Start of acquisition for all modules data from which should be synchronized. This
item can be also executed after configuration of synchro-labels of the slave crates
(item 4) it there is a guarantee that the synchronization event does not occur during
acquisition start when a part of modules is started and another part is not started.
In case of application of labels from the master crate it is guaranteed as labels will
be generated only after calling the respective functions for the master crate.

4. Configuration of synchro-label generation using the signals at the respective DIGIN
inputs of the synchronization connector for all slave crates. For this purpose for
each slave crate the following should be performed via the control connection with
the respective crate:

• call the function LTR_MakeStartMark() with indication of the mode
LTR_MARK_EXT_DIGIN1_RISE to set up "START" label generation start using
the signal edge at the DIGIN1 input

• call the function LTR_StartSecondMark() with indication of the mode
LTR_MARK_EXT_DIGIN2_RISE to set up "SECOND" label generation using the
signal edge at the DIGIN2 input

5. Start of second labels for the master crate using LTR_MakeStartMark() with
indication of the mode LTR_MARK_INTERNAL via the control connection of the
master crate

6. "START" labels generation by the master crate using LTR_MakeStartMark() with
indication of the mode LTR_MARK_INTERNAL via the control connection of the
master crate

Configuration in case of label generation using the external signal is almost the same,
the difference is that there is no master crate and the respective items can be omitted.

18

Chapter 5

Constants, types of data and library
functions

5.1 Constants and tabulations.

5.1.1 Constants and macro definitions.

Constant Value Description

LTRD_ADDR_LOCAL (0x7F000001l)

IP-address for connection
to the service ltrd that
corresponds to the case
when the service is started
on the local computer (the
same computer from which
the connection is begin
established)

LTRD_ADDR_DEFAULT (LTRD_ADDR_LOCAL)
Default IP-address for
connection to the
service ltrd

LTRD_PORT_DEFAULT (11111)
TCP-port, used by default,
for connection to the
service ltrd

LTR_CRATES_MAX 16l

Maximum number of crates
that can be obtained using
the function
LTR_GetCrates(). If the
number of crates can
exceed the above
mentioned number, you
can use the function
LTR_GetCratesWithInfo(),
that does not have any
restriction of the crate
number

LTR_MODULES_PER_CRATE_MAX 16l Maximum number of
modules in one crate

19

LTR_CSN_SERVER_CONTROL “#SERVER_CONTROL”

If this line is used
instead of the serial
number of the crate
when establishing
connection, the control
connection with ltrd
that is not related to
any crate will be
established

LTR_MID_MODULE
(((x) & 0xFF) |
(((x) & 0xFF) « 8))

Macro for setting up
the module identifier
with the specified
number

LTR_MODULE_NAME_SIZE 16
Size of the line with the
module name in the
module description

LTR_CRATE_DEVNAME_SIZE 32
Size of the line with the
device name in the
crate description

LTR_CRATE_SERIAL_SIZE 16
Size of the line with the
serial number of the
crate

LTR_CRATE_SOFTVER_SIZE 32
Size of the line with
firmware version of the
crate in its description

LTR_CRATE_REVISION_SIZE 16
Size of the line with
crate revision in its
description

LTR_CRATE_BOARD_OPTIONS_SIZE 16

Size of the line with
description of the
board options in the
crate description

LTR_CRATE_BOOTVER_SIZE 16
Size of the line with
loader version in the
crate description

LTR_CRATE_CPUTYPE_SIZE 16
Size of the line with
processor description in
the crate description

LTR_CRATE_TYPE_NAME 16 Size of the line with
crate type description

LTR_CRATE_SPECINFO_SIZE 48
Size of the additional
information on the
crate

LTR_CRATE_FPGA_NAME_SIZE 32

Size of the line with the
description of FPGA
type in the crate
description

20

LTR_CRATE_FPGA_VERSION_SIZE 32
Size of the line with
FPGA firmware version
in the crate description

LTR_CRATE_THERM_MAX_CNT 8

Maximum number of
thermometers in the
crate reading of which
are shown in the
statistics

LTR_DEFAULT_SEND_RECV_TIMEOUT 10000UL
Default time-out in ms
for execution of
requests to ltrd

5.1.2 Error codes.

Type: en_LTR_ERRORS
Description: Error codes that can return the ltrapi library functions. Also include
general error codes for the modules.
Constant Value Description

LTR_OK 0 Operation is executed without
errors

LTR_ERROR_UNKNOWN -1 Unknown error.

LTR_ERROR_PARAMETERS -2
One of the function
parameters is set up
incorrectly.

LTR_ERROR_MEMORY_ALLOC -3 Heap allocation error.

LTR_ERROR_OPEN_CHANNEL -4 Error of initialization of the
channel for exchange with ltrd

LTR_ERROR_OPEN_SOCKET -5 Error of connection to ltrd

LTR_ERROR_CHANNEL_CLOSED -6 Channel for exchange with ltrd
is not created or is closed

LTR_ERROR_SEND -7 Error of data transmission to
ltrd

LTR_ERROR_RECV -8 Error of data receiving from
ltrd

LTR_ERROR_EXECUTE -9
Error of exchangewith the
crate
controller

LTR_WARNING_MODULE_IN_USE -10
Warning: active connection
with the given module has
been already estblished

LTR_ERROR_NOT_CTRL_CHANNEL -11 This operation is only available
for the control connection

LTR_ERROR_SRV_INVALID_CMD -12 The command is not
supported by ltrd

21

LTR_ERROR_SRV_INVALID_CMD_PARAMS -13
ltrd does not support the
specified command
parameters

LTR_ERROR_INVALID_CRATE -14 The specified crate is not
found

LTR_ERROR_EMPTY_SLOT -15 There is no module in the
specified slot

LTR_ERROR_UNSUP_CMD_FOR_SRV_CTL -16 The command is not supported
by the control connection

LTR_ERROR_INVALID_IP_ENTRY -17 Incorrect entry of the crate
network address

LTR_ERROR_NOT_IMPLEMENTED -18 This capability is not
implemented

LTR_ERROR_CONNECTION_CLOSED -19 The connection was closed by
the service ltrd

LTR_ERROR_LTRD_UNKNOWN_RETCODE -20 Unknown error code of the
service ltrd

LTR_ERROR_LTRD_CMD_FAILED -21 Error of execution of the control
command of ltrd

LTR_ERROR_INVALID_CON_SLOT_NUM -22
Incorrect slot number is
specified during connection
opening

LTR_ERROR_INVALID_MODULE_DESCR -40 Incorrect module descriptor

LTR_ERROR_INVALID_MODULE_SLOT -41 Incorrect slot for the module is
specified

LTR_ERROR_INVALID_MODULE_ID -42 Incorrect ID of the module in
the response to reset

LTR_ERROR_NO_RESET_RESPONSE -43 No response to module reset

LTR_ERROR_SEND_INSUFFICIENT_DATA -44
Less words were transmitted to
the module than were
requested

LTR_ERROR_RECV_INSUFFICIENT_DATA -45
Less words were received from
the module than were
requested

LTR_ERROR_NO_CMD_RESPONSE -46 No response to the transmitted
command

LTR_ERROR_INVALID_CMD_RESPONSE -47 Incorrect response to the
command was transmitted

LTR_ERROR_INVALID_RESP_PARITY -48 Parity error in the received
response to the command

LTR_ERROR_INVALID_CMD_PARITY -49 Parity error in the transmitted
command

LTR_ERROR_UNSUP_BY_FIRM_VER -50 Capability is not supported by
this firmware version

22

LTR_ERROR_MODULE_STARTED -51 Operation is not possible with
acquisition started

LTR_ERROR_MODULE_STOPPED -52 Data acquisition is stopped

LTR_ERROR_RECV_OVERFLOW -53 The buffer of the service ltrd is
overfilled the receiving data

LTR_ERROR_FIRM_FILE_OPEN -54 Error of firmware file opening
LTR_ERROR_FIRM_FILE_READ -55 Error of firmware file reading
LTR_ERROR_FIRM_FILE_FORMAT -56 Error of firmware file format

LTR_ERROR_FPGA_LOAD_READY_TOUT -57
Time-out of waiting for FPGA
readiness for loading is
exceeded

LTR_ERROR_FPGA_LOAD_DONE_TOUT -58
Time-out of waiting for FPGA
switching to the operating
mode is exceeded

LTR_ERROR_FPGA_IS_NOT_LOADED -59 FPGA firmware is not loaded
LTR_ERROR_FLASH_INVALID_ADDR -60 Incorrect address of flash-

memory

LTR_ERROR_FLASH_WAIT_RDY_TOUT -61
Time-out of waiting for record
completing or erasing of
Flash-memory is exceeded

LTR_ERROR_FIRSTFRAME_NOTFOUND -62 Start of frame is not found in
the flow from the module

LTR_ERROR_CARDSCONFIG_UNSUPPORTED -63 Crate does not support
module configuration storing

LTR_ERROR_FLASH_OP_FAILED -64 Error of execution of the
operation with flash-memory

LTR_ERROR_FLASH_NOT_PRESENT -65 Flash-memory is not found

LTR_ERROR_FLASH_UNSUPPORTED_ID -66 Unsupported type of flash-
memory is found

LTR_ERROR_FLASH_UNALIGNED_ADDR -67 Non-aligned address of flash-
memory

LTR_ERROR_FLASH_VERIFY -68 Error when checking data
written to flash-memory

LTR_ERROR_FLASH_UNSUP_PAGE_SIZE -69 Unsupported size of flash-
memory page is set up

LTR_ERROR_FLASH_INFO_NOT_PRESENT -70 No information on the module
in flash-memory

LTR_ERROR_FLASH_INFO_UNSUP_FORMAT -71
Unsupported format of the
information on the module in
flash-memory

LTR_ERROR_FLASH_SET_PROTECTION -72 Setting up of the flash-
memory protection failed

LTR_ERROR_FPGA_NO_POWER -73 No power supply of FPGA
microcircuit

LTR_ERROR_FPGA_INVALID_STATE -74 Invalid status of FPGA loading

23

LTR_ERROR_FPGA_ENABLE -75 FPGA switching to the
required status failed

LTR_ERROR_FPGA_AUTOLOAD_TOUT -76 FPGA automatic loading
timeout

LTR_ERROR_PROCDATA_UNALIGNED -77
The data to be processed are
not aligned with the frame
edge

LTR_ERROR_PROCDATA_CNTR -78 Error of the counter in the
data to be processed

LTR_ERROR_PROCDATA_CHNUM -79
Incorrect number of the
channel in the data to be
processed

LTR_ERROR_PROCDATA_WORD_SEQ -80 Incorrect sequence of words
in the data to be processed

LTR_ERROR_FLASH_INFO_CRC -81
Bad checksum in the
recorded information on the
module

5.1.3 Crate's processor client outputs connection mode

Type: en_LTR_UserIoCfg
Description: These constants set the connection mode for the specific processor
pin, that can be used in some crates when coding the client processor firmware.
For the standard firmware they are not used.
Constant Value Description

LTR_USERIO_DIGIN1 1 Pin is an input and connected to
DIGIN1

LTR_USERIO_DIGIN2 2 Pin is an input and connected to
DIGIN2

LTR_USERIO_DIGOUT 0 Foot is an output
LTR_USERIO_DEFAULT LTR_USERIO_DIGOUT Default value

5.1.4 Operating mode of the crate's DIGOUTx outputs.

Type: en_LTR_DigOutCfg
Description: These values determine what signal will be set up at the specific DIGOUT
output of the crate's synchronization connector.
Constant Value Description
LTR_DIGOUT_CONST0 0 Constant level of logical “0”
LTR_DIGOUT_CONST1 1 Constant level of logical “1”
LTR_DIGOUT_USERIO0 2 Output is connected to the pin

userio0
LTR_DIGOUT_USERIO1 3 Output is connected to the pin

userio1

24

LTR_DIGOUT_DIGIN1 4 Output is connected to the DIGIN1
input

LTR_DIGOUT_DIGIN2 5 Output is connected to the DIGIN2
input

LTR_DIGOUT_START 6
Pulses that correspond to the times
of "START" label generation are sent
to the output

LTR_DIGOUT_SECOND 7
Pulses that correspond to the times
of "SECOND" label generation are
sent to the output

LTR_DIGOUT_IRIG 8 Check of standard time signals IRIG
(digout1: ready, digout2: second)

LTR_DIGOUT_DEFAULT LTR_DIGOUT_CONST0 Default value

5.1.5 Synchro-label generation mode.

Type: en_LTR_MarkMode
Description: These values are used to indicate condition according to which
"START" and "SECOND" labels will be generated.
Constant Value Description
LTR_MARK_OFF 0 Label generation is OFF

LTR_MARK_EXT_DIGIN1_RISE 1 Label is generated by the signal edge
at the input DIGIN1

LTR_MARK_EXT_DIGIN1_FALL 2 Label is generated by the signal fall at
the input DIGIN1

LTR_MARK_EXT_DIGIN2_RISE 3 Label is generated by the signal edge
at the input DIGIN2

LTR_MARK_EXT_DIGIN2_FALL 4 Label is generated by the signal fall at
the input DIGIN2

LTR_MARK_INTERNAL 5

Internal label generation by the crate
controller. For the "START" label
generation is performed only once
when calling LTR_MakeStartMark(). For
the "SECOND" label — by the crate
timer (once per second), starting from
the calling LTR_StartSecondMark().

LTR_MARK_SEC_IRIGB_DIGIN1 16

The source of the label is the standard
time signal decoder IRIG-B006. Can be
used only foe second labels. The signal
from the input DIGIN1 is used as an
input signal

LTR_MARK_SEC_IRIGB_nDIGIN1 17

Similarly
LTR_MARK_SEC_IRIGB_DIGIN1, but
the inverted signal from the input
DIGIN1 is used as an input signal

LTR_MARK_SEC_IRIGB_DIGIN2 18 Similarly

25

LTR_MARK_SEC_IRIGB_DIGIN1, but
the signal from the input DIGIN2 is
used as an input signal

LTR_MARK_SEC_IRIGB_nDIGIN2 19

Similarly
LTR_MARK_SEC_IRIGB_DIGIN1, but
the inverted signal from the input
DIGIN2 is used as an input signal

5.1.6 Level of history log output by the service ltrd.

Type: en_LTR_LogLevel
Description: Level of history log output by the service ltrd.
Constant Value Description
LTR_LOGLVL_ERR_FATAL 0 Fatal errors
LTR_LOGLVL_ERR 1 Errors
LTR_LOGLVL_WARN 2 Warnings
LTR_LOGLVL_INFO 3 Informational messages
LTR_LOGLVL_DETAIL 4 Details

LTR_LOGLVL_DBG_HIGH 5 Debugging messages of the higher level of
concern

LTR_LOGLVL_DBG_MED 6 Debugging messages of the medium level of
concern

LTR_LOGLVL_DBG_LOW 7 Debugging messages of the lower level of
concern

5.1.7 Flags of the functions of acquisition of data on the connected
crates.

Type: en_LTR_GetCratesFlags
Description: These flags can control operation of the function
LTR_GetCratesEx(). As the "flags" parameter the set of these flags combined by
bit "OR", is transmitted to the function.
Constant Value Description

LTR_GETCRATES_FLAGS_WORKMODE_ONLY 0x1

The flag indicates that the
function must return only
the list of crates with which
the service established
operating connection where
crate module control is
possible. As currently the
crate has the only interface
(configured in the settings)
at a time that enables to
work with the modules, with
this flag several entries
related to the same crate will

26

not be returned in case of
simultaneous crate
connection via several
interfaces.
This flag is available starting
from the version ltrd 2.1.5.0
and ltrapi 1.31.1.

5.1.8 Adjustable parameters of the service ltrd.

Type: en_LTRD_Params
Description: List of setting parameters that control operation of the service ltrd.
These parameters are configured via the configuration file or via
LTR_SetServerParameter(). The description of each code specifies, using what
method the parameter value is set.
Constant Value Description

LTRD_PARAM_ETH_CRATE_POLL_TIME 0x100

Crate polling interval to check if
the connection with crate via
Ethernet interface is operating
and to detect crate disconnection.
DWORD type parameter sets time
in ms.

LTRD_PARAM_ETH_CRATE_CON_TOUT 0x101

Timeout for establishing the
service connection with the crate
over Ethernet. DWORD type
parameter sets time in ms.

LTRD_PARAM_ETH_CRATE_CTLCMD_TO
UT 0x102

Timeout for response to control
command for the crate over
Ethernet. DWORD type parameter
sets time in ms.

LTRD_PARAM_ETH_INTF_CHECK_TIME 0x103
Host address scan interval to start
auto-connection. DWORD type
parameter sets time in ms.

LTRD_PARAM_ETH_CRATE_RECONNECT
_
TIME

0x104

Time at the lapse of which
reconnection to the crate will be
performed over
Ethernet in case of error, if the
flag is set for this IP entry
LTR_CRATE_IP_FLAG_RECONNE
CT. The parameter is available
starting from the version ltrd
2.1.5.0 and ltrapi 1.31.1.

27

5.1.9 Numbers of channels for connection with the service ltrd

Type: en_LTR_CC_ChNum
Description: Numbers of channels for connection with the service ltrd
Constant Value Description

LTR_CC_CHNUM_CONTROL 0 Channel for command request transmission
to the crate or the service ltrd

LTR_CC_CHNUM_MODULE1 1 Channel for operating with the module in
slot 1

LTR_CC_CHNUM_MODULE2 2 Channel for operating with the module in
slot 2

LTR_CC_CHNUM_MODULE3 3 Channel for operating with the module in
slot 3

LTR_CC_CHNUM_MODULE4 4 Channel for operating with the module in
slot 4

LTR_CC_CHNUM_MODULE5 5 Channel for operating with the module in
slot 5

LTR_CC_CHNUM_MODULE6 6 Channel for operating with the module in
slot 6

LTR_CC_CHNUM_MODULE7 7 Channel for operating with the module in
slot 7

LTR_CC_CHNUM_MODULE8 8 Channel for operating with the module in
slot 8

LTR_CC_CHNUM_MODULE9 9 Channel for operating with the module in
slot 9

LTR_CC_CHNUM_MODULE10 10 Channel for operating with the module in
slot 10

LTR_CC_CHNUM_MODULE11 11 Channel for operating with the module in
slot 11

LTR_CC_CHNUM_MODULE12 12 Channel for operating with the module in
slot 12

LTR_CC_CHNUM_MODULE13 13 Channel for operating with the module in
slot 13

LTR_CC_CHNUM_MODULE14 14 Channel for operating with the module in
slot 14

LTR_CC_CHNUM_MODULE15 15 Channel for operating with the module in
slot 15

LTR_CC_CHNUM_MODULE16 16 Channel for operating with the module in
slot 16

28

5.1.10 Indicators of the communication channel ltrd for definite crate
interface setting up

Type: en_LTR_CC_Iface
Description: Indicators of the communication channel ltrd for definite crate interface
setting up
Constant Value Description

LTR_CC_IFACE_USB 0x0100
Distinct indication that the connection must be
established with the crate connected via USB-
interface

LTR_CC_IFACE_ETH 0x0200
Distinct indication that the connection must be
established with the crate connected over Ethernet
(TCP/IP)

5.1.11 Additional flags of the channel for communication with ltrd

Type: en_LTR_CC_Flags
Description: Additional flags of the channel for communication with ltrd
Constant Value Description

5.1.12 Connection status flags

Type: en_LTR_ChStateFlags
Description: Connection status flags
Constant Value Description

LTR_FLAG_RBUF_OVF (1u«0)

Flag of buffer over-flow Indicates that because
the client has not read data, client queue
overflow has occurred in ltrd, therefore, there
is a gap in received data

LTR_FLAG_RFULL_DATA (1u«1) Flag of data receiving in the full format in the
function LTR_GetCrateRawData()

5.1.13 Modules' identifiers

Type: en_LTR_MIDs

Description: Modules' identifiers

Constant Value Description
LTR_MID_EMPTY 0 Empty slot
LTR_MID_IDENTIFYING 0xFFFF Module is in the process of type

definition
LTR_MID_LTR01 LTR_MID_MODULE(1) Identifier of the module LTR01
LTR_MID_LTR11 LTR_MID_MODULE(11) Identifier of the module LTR11

29

LTR_MID_LTR22 LTR_MID_MODULE(22) Identifier of the module LTR22
LTR_MID_LTR24 LTR_MID_MODULE(24) Identifier of the module LTR24
LTR_MID_LTR25 LTR_MID_MODULE(25) Identifier of the module LTR25
LTR_MID_LTR27 LTR_MID_MODULE(27) Identifier of the module LTR27
LTR_MID_LTR34 LTR_MID_MODULE(34) Identifier of the module LTR34
LTR_MID_LTR35 LTR_MID_MODULE(35) Identifier of the module LTR35
LTR_MID_LTR41 LTR_MID_MODULE(41) Identifier of the module LTR41
LTR_MID_LTR42 LTR_MID_MODULE(42) Identifier of the module LTR42
LTR_MID_LTR43 LTR_MID_MODULE(43) Identifier of the module LTR43
LTR_MID_LTR51 LTR_MID_MODULE(51) Identifier of the module LTR51
LTR_MID_LTR114 LTR_MID_MODULE(114) Identifier of the module LTR114
LTR_MID_LTR210 LTR_MID_MODULE(210) Identifier of the module LTR210
LTR_MID_LTR212 LTR_MID_MODULE(212) Identifier of the module LTR212

5.1.14 Crate types

Type: en_LTR_CrateTypes

Description: Crate types

Constant Value Description
LTR_CRATE_TYPE_UNKNOWN 0 Unknown crate type
LTR_CRATE_TYPE_LTR010 10 Crate LTR-U-8 or LTR-U-16
LTR_CRATE_TYPE_LTR021 21 Crate LTR-U-1
LTR_CRATE_TYPE_LTR030 30 Crate LTR-EU-8 or LTR-EU-16
LTR_CRATE_TYPE_LTR031 31 Crate LTR-EU-2
LTR_CRATE_TYPE_LTR_CU_1 40 Crate LTR-CU-1
LTR_CRATE_TYPE_LTR_CEU_1 41 Crate LTR-CEU-1

LTR_CRATE_TYPE_BOOTLOADER 99 Crate is in the loader mode (if the type
can not be determined in this mode)

5.1.15 Crate connection interface

Type: en_LTR_CrateIface
Description: Crate connection interface
Constant Value Description

LTR_CRATE_IFACE_UNKNOWN 0

Unknown code of the crate interface.
When transmitting to the functions this
value can indicate that crate connection
interface is of no importance

LTR_CRATE_IFACE_USB 1 Crate is connected via USB interface
LTR_CRATE_IFACE_TCPIP 2 Crate is connected over Ethernet

(TCP/IP)

30

5.1.16 Status of connection with the crate that corresponds to the entry
with IP-address

Type: en_LTR_CrateIpStatus
Description: Status of connection with the crate that corresponds to the entry with
IP-address
Constant Value Description
LTR_CRATE_IP_STATUS_OFFLINE 0 Crate is not connected

LTR_CRATE_IP_STATUS_CONNECTING 1
Connection with the crate is in
progress (operation is started but
is not completed)

LTR_CRATE_IP_STATUS_ONLINE 2 Crate is connected

LTR_CRATE_IP_STATUS_ERROR 3
Error of the
crate connection.
Fail to establish the connection.

5.1.17 Flags corresponding to the entry with crate's IP-address

Type: en_LTR_CrateIpFlags
Description: Flags corresponding to the entry with crate's IP-address
Constant Value Description

LTR_CRATE_IP_FLAG_AUTOCONNECT 0x1

The flag indicates that when
starting or in case of detection of a
new network the service ltrd must
establish connection to the crate
with IP-address that corresponds to
this entry

31

LTR_CRATE_IP_FLAG_RECONNECT 0x2

The flag indicates that in case of an
error of establishment of
connection with the crate or
disconnection from the operating
crate due to an error the service ltrd
must perform new attempt of
connection. If the flag is not set up,
the entry passes to the status
LTR_CRATE_IP_STATUS_ERROR
and no actions are executed. If the
flag is set up, in a set time interval
a new attempt of connection will be
performed and these attempts will
be repeatedly performed until the
connection is established or a
distinct disconnection command is
executed, this flag is deleted or the
respective entry with the IP-
address is deleted.
This capability is available starting
from the version ltrd 2.1.5.0 and
ltrapi
1.31.1.

5.1.18 Flags from the module description

Type: en_LTR_ModuleDescrFlags

Description: Flags from the module description

Constant Value Description

LTR_MODULE_FLAGS_HIGH_BAUD 0x0001

The indicator showing that the
module uses high-speed of the
interface for word transmission
to the module

LTR_MODULE_FLAGS_USE_HARD_SEND_
FIFO 0x0100

The indicator showing that the
module uses the statistics of
the internal hardware FIFO for
data transmission

LTR_MODULE_FLAGS_USE_SYNC_MARK 0x0200
The indicator showing that the
module supports synchro-label
generation

32

5.1.19 Crate operation mode

Type: en_LTR_CrateMode

Description: Crate operation mode

Constant Value Description

LTR_CRATE_MODE_BOOTLOADER 1 Crate is in the loader mode

LTR_CRATE_MODE_WORK 2 Crate is in the operating mode

LTR_CRATE_MODE_CONTROL 3

Crate is in the mode when it receives
only command requests (e.g. if the
crate is not connected via the
interface to which it is set)

5.1.20 FPGA status

Type: e_LTR_FPGA_STATE
Description: Constants that determine the current FPGA status. These constants
are used in the functions and added to ltrapi as they are common for the module
group but they do not use the function of this library distinctly

Constant Value Description
LTR_FPGA_STATE_NO_POWER 0x0 No FPGA power supply signal

LTR_FPGA_STATE_NSTATUS_TOUT 0x1 Timeout of FPGA readiness for
loading

LTR_FPGA_STATE_CONF_DONE_TOUT 0x2
Timeout of FPGA loading
completion (usually means the
there is no valid firmware in Flash)

LTR_FPGA_STATE_LOAD_PROGRESS 0x3 FPGA is being loaded

LTR_FPGA_STATE_POWER_ON 0x4
State after POWER_ON. Indicate
that unexpected power supply
failure has occurred

LTR_FPGA_STATE_LOAD_DONE 0x7 FPGA lading is completed, but
FPGA operation is still disabled

LTR_FPGA_STATE_WORK 0xF Normal operating FPGA status

33

5.2 Data types

5.2.1 Connection descriptor.

Type: TLTR
Description: This structure contains all information on the connection with the
service ltrd. This structure is used in majority of functions as the first parameter.
A part of fields (saddr, sport, csn, cc) are intended for filling-in by the user prior
to connection establishment to set up connection parameters and then is not
changed. A part of parameters (flags, tmark) is intended only for reading and
shows additional information that is updated during receiving data through
LTR_Recv() or in other cases.

Field Type Field description

saddr DWORD

IP-address of the computer on which the
service ltrd has been run, in 32-bit format. By
default it is set up in LTRD_ADDR_DEFAULT
equal to LTRD_ADDR_LOCAL that corresponds
to the case when the service has been run on
the same computer with the user program run.

sport WORD
Number of the TCP port that will be used when
connecting to the service ltrd.
LTRD_PORT_DEFAULT is used by default.

csn CHAR [LTR_CRATE_
SERIAL_SIZE]

Serial number of the crate to which the
connection must respond. If an empty line (by
default) is set, connection with the first crate
from the current list of active crates of ltrd will
be established. In this case after connection
establishment this field will be changed to the
actual serial number of the crate with which the
connection is established. If the line
LTR_CSN_SERVER_CONTROL is written, the
control connection with the ltrd service will be
established that is not related to any crate and
can be established when no active crates are
available.

34

cc WORD

Type of the channel for connection with ltrd. It
is configured by one of the constants
en_LTR_CC_ChNum. Indicates whether this
connection is control
(LTR_CC_CHNUM_CONTROL) or it is the
connection with the module in the specified slot
(LTR_CC_CHNUM_MODULE1 ..
LTR_CC_CHNUM_MODULE16). Also, if
necessary, can be combined with the flags
en_LTR_CC_Iface and en_LTR_CC_Flags to
indicate additional connection parameters.

flags DWORD

Connection status indicators Set of values from
en_LTR_ChStateFlags combined through the
logical OR. This field is intended only for
reading and must not be distinctly changed by
the user.

tmark DWORD

The last value of synchro-labels received for
this connection. This field is updated when
executing LTR_Recv(), if synchro-labels were
detected during reception. This field is intended
only for reading by the reader and must not be
distinctly changed by the user.

Internal LPVOID
Opaque pointer to the structures with
parameters required to ensure exchange. The
user is prohibited to use this field.

5.2.2 Configuration of the synchronization connector lines.

Type: TLTR_CONFIG
Description: This structure is used to configure functions of the outputs DIGOUT
on the synchronization connector SYNC of the crates LTR-EU, LTR-CEU and
LTRCU.
Also, this structure enables to configure the functions of the special user pins of
the processor BlackFin for the crates LTR-EU, however, the last function is
required only when coding user firmware.
Field Type Field description

userio WORD [4]

Configuration of processor user pin functions. Each
element corresponds to its own pin userio0 - userio3
and sets its mode by one of values
en_LTR_UserIoCfg. (for LTR-EU userio0 — PF1
(board revision 0) or PF0 (in revision 1+), userio1 —
PG13, userio2 — PF3 (only revision 1+), userio3 —
reserve). In the standard crate firmware these
settings do not influence operation and must be set
to the value LTR_USERIO_DEFAULT.

35

digout WORD [2]

Configuration of the functions of the outputs DIGOUT
on the crate's synchronization connector. Each array
element sets the mode of the respective output
(element 0 — DIGOUT1, and 1 — DIGOUT2) by one
of the values from en_LTR_DigOutCfg. Besides, to
use this functions the outputs must be enabled via
digout_en.

digout_en WORD

Enabling of the outputs DIGOUT1 and DIGOUT2 on
the crate's synchronization connector (0 — disabled,
1 — enabled). All output lines are enabled or disabled
simultaneously. If the outputs are enabled the signal
will be generated at them in accordance with the
configured function indicated in the respective
element of the array digout. If disabled, the outputs
are in the third status regardless of the set configured
functions in the array digout.

5.2.3 Information on the type and interface of crate connection

Type: TLTR_CRATE_INFO
Description: This structure is filled in with the function LTR_GetCrateInfo() and
contains the information on the crate type and its connection interface.
Field Type Field description
CrateType BYTE Crate type — value from en_LTR_CrateTypes

CrateInterface BYTE Crate connection interface — value from
en_LTR_CrateIface

5.2.4 Entry with the crate IP-address

Type: TLTR_CRATE_IP_ENTRY
Description: This structure contains the information on the log of IP-address of
the crate, stored in the settings of the service ltrd, and the status of the crate
connection via Ethernet interface (TCP/IP), that corresponds to this entry

Field Type Field description

ip_addr DWORD Crate IP-address. Format is similar to the
field saddr in TLTR

flags DWORD Set of flags related to this entry from
en_LTR_CrateIpFlags

serial_number CHAR [LTR_CRATE_
SERIAL_SIZE]

If the crate is connected, this field contains
the serial number of the connected crate.
This number can be used to open the
connection with the crate. For other status
values this field contains the empty line as
the serial number is unknown

36

is_dynamic BYTE Reserve field. Always equal to 0

status BYTE
Crate connection status corresponding to
this entry. Single value
from en_LTR_CrateIpStatus

5.2.5 Crate statistics

Type: TLTR_CRATE_STATISTIC
Description: The structure contains information on the crate status and the
statistics parameters of operation with the crate that is gathered by the service
ltrd. This statistics can be obtained via the control connection using the function
LTR_GetCrateStatistic(). The statistics is gathered from the moment of
connection establishment between ltrd and the crate.
Field Type Field description

size DWORD
Size of all valid structure fields,
including the "size" field itself

flags DWORD Flags — reserve
crate_type WORD Crate type from

en_LTR_CrateTypes

crate_intf WORD Interface via which the crate from
en_LTR_CrateIface is connected

crate_state WORD Reserve

crate_mode WORD Operating mode of the crate from
en_LTR_CrateMode

con_time ULONGLONG
Set-up time for the connection
between service and the crate
(format unixtime)

res WORD [11] Reserve

modules_cnt WORD Number of slots in this crate type

mids
WORD
[LTR_MODULES_
PER_CRATE_MAX]

ID of the modules for all crate
slots

res2
WORD [3 *LTR_
MODULES_PER_CRATE_
MAX]

Reserve

ctl_clients_cnt WORD
Number of clients connected via
the control channel to the crate

total_mod_clients_
cnt WORD Number of clients connected to all

crate modules
res3 DWORD [11] Reserve

37

wrd_sent ULONGLONG
Total number of words transmitted
to the crate (crate and all its
modules)

wrd_recv ULONGLONG
Total number of words received
from the crate (from crate itself and
all its modules)

bw_send double Current rate of word transmission
to the crate (word/s)

bw_recv double Current frequency of word receive
from the crate (word/s)

crate_wrd_recv ULONGLONG Number of words received directly
from the crate

internal_rbuf_miss ULONGLONG
Number of lost buffers in the crate
due to internal overflow

internal_rbuf_ovfls DWORD Number of overflows of the crate
internal buffer

rbuf_ovfls DWORD

Number of overflows of the buffer
for data receiving from the modules
in the service ltrd for the crate
modules (total number for all
modules)

total_start_marks DWORD
Number of the "Start" labels
received both from the crate and
the modules

total_sec_marks DWORD
Number of the second labels
received both from the crate and
the modules

crate_start_marks DWORD
Number of "Start" labels received
directly from the crate

crate_sec_marks DWORD Number of second labels received
directly from the crate

crate_unixtime ULONGLONG
The last value of the extended
second label (unixtime format), if
supported by the crate

therm_mask DWORD
Mask of valid thermometer
readings (if not supported — 0)

therm_vals float [LTR_CRATE_
THERM_MAX_CNT]

crate thermometer readings value.
Valid only if the respective bit in
herm_mask is in 1

res4 DWORD [19] Reserve

38

5.2.6 Module statistics

Type: TLTR_MODULE_STATISTIC
Description: The structure contains information on the module status and the
statistics parameters of operation with this module that is gathered by the
service ltrd. This statistics can be obtained via the control connection using the
function LTR_GetModuleStatistic(). The statistics is gathered from the moment
when the module is found and reset along with module resetting via
LTR_ResetModule()
Field Type Field description

size DWORD
Size of all valid structure fields,
including the "size" field itself

client_cnt WORD Number of clients established the
connection with the module

mid WORD Identifier of the module from
en_LTR_MIDs

flags DWORD
Set of flags describing module
features from
en_LTR_ModuleDescrFlags

name CHAR [LTR_MODULE_
NAME_SIZE]

Line with the name of the module
(possibly with modifications, if ltrd
can determine them)

res DWORD [5] Reserve

wrd_sent ULONGLONG Number of words, transmitted to
the module

wrd_recv ULONGLONG Number of words received from
the module

bw_send double Current rate of word transmission
to the module (word/s)

bw_recv double Current frequency of word receive
from the module (word/s)

wrd_sent_to_client ULONGLONG Number of words, transmitted to
the client

wrd_recv_from_
client ULONGLONG Number of words received from

the client

wrd_recv_drop ULONGLONG
Number of omitted words due to
overflow of the buffer for receiving
in the service ltrd

rbuf_ovfls DWORD Number of overflows of the buffer
for receiving in the service ltrd

send_srvbuf_size DWORD Size of the buffer in ltrd for the
module for transmission

recv_srvbuf_size DWORD Size of the buffer in ltrd for the
module for receiving

39

send_srvbuf_full DWORD By how many words the buffer for
transmission is filled

recv_srvbuf_full DWORD By how many words the buffer for
receiving is filled

send_srvbuf_full_
max DWORD By how many words the buffer for

transmission was max. filled
recv_srvbuf_full_ max DWORD By how many words the buffer for

receiving was max. filled
res2 DWORD [17] Reserve

start_mark DWORD Number of "START" labels received
from the module

sec_mark DWORD Number of second labels received
from the module

hard_send_fifo_size DWORD

Size of hardware queue inside the
module. This field and all other
fields hard_send_... are valid only
for the output modules with
available controlled sequential
queue ltrd in the module (the
respective flag for these modules is
set up in the "flags" field)

hard_send_fifo_
unack_words DWORD

Allocated status of the hardware
queue (number of transmitted but
not confirmed words)

hard_send_fifo_
underrun DWORD

Number of queue "hungers" (the
queue is empty when trying to
output the value from it) from the
moment of the last module reset

hard_send_fifo_
overrun DWORD

Number of queue overflows from
the moment of the last module
reset

hard_send_fifo_
internal DWORD Internal status of the hardware

queue
res3 DWORD [25] Reserve

40

5.2.7 Information on the crate and its firmware

Type: TLTR_CRATE_DESCR
Description: The structure contains the information on the crate including all
versions related to the crate. Majority of the fields are presented in the form that
ends with the line null symbol.
This statistics can be obtained via the control connection using LTR_GetCrateDescr().

Field Type Field description

size DWORD Size of all valid structure fields,
including the "size" field itself

devname CHAR [LTR_CRATE_
DEVNAME_SIZE] Crate name

serial CHAR [LTR_CRATE_
SERIAL_SIZE] Serial number

soft_ver CHAR [LTR_CRATE_
SOFTVER_SIZE] Firmware version

brd_revision CHAR [LTR_CRATE_
REVISION_SIZE] Board revision

brd_opts char [LTR_CRATE_
BOARD_OPTIONS_SIZE] Board options

bootloader_ver CHAR [LTR_CRATE_
BOOTVER_SIZE] Loader version

cpu_type CHAR [LTR_CRATE_
CPUTYPE_SIZE] Type of microcontroller

fpga_name CHAR [LTR_CRATE_
FPGA_NAME_SIZE] FPGA name in the crate

fpga_version char [LTR_CRATE_
FPGA_VERSION_SIZE] FPGA firmware version

crate_type_name CHAR [LTR_CRATE_
TYPE_NAME] Line with crate type

spec_info CHAR [LTR_CRATE_
SPECINFO_SIZE] Reserve

protocol_ver_
major BYTE Version of the protocol between ltrd

and the crate (major)
protocol_ver_
minor BYTE Version of the protocol between ltrd

and the crate (minor)

41

5.3 Function
5.3.1 Functions of initialization and working with connection
5.3.1.1 Initialization of the connection descriptor

Format: INT LTR_Init (TLTR *hnd)
Description:

The function initializes the structure fields of the connection descriptor using
default values. This function must be called first for every structure TLTR prior
to calling other functions.
Parameters: hnd — Connection
descriptor.
Returned value: Error code.

5.3.1.2 Connection opening

Format: INT LTR_Open (TLTR *hnd)
Description:

The function establishes the client connection in accordance with the set up
fields saddr, sport, csn and cc of the module descriptor. Chapter Client
connection types contain detailed information on connection types.

Upon completion of work it is necessary to close connection using
LTR_Close().

If the function returns an error, in some cases the connection can remain
opened (e.g. fr the error LTR_WARNING_MODULE_IN_USE), therefore even if
this function returns an error, you should call LTR_Close().

It is recommended to interpret all returned errors (including
LTR_WARNING_MODULE_IN_USE) as an indicator showing that it is not possible
to work with the connection, and the only allowed function that can and must
be called, is LTR_Close().
Parameters: hnd — Connection
descriptor.
Returned value: Error code.

42

5.3.1.3 Opening of the control connection with the service ltrd

Format: INT LTR_OpenSvcControl (TLTR *hsrv, DWORD ltrd_addr, WORD
ltrd_port)
Description:

This function establishes the control connection with the service ltrd. This
connection can be established even when there are no connected crates and it
enables to execute commands that control service operation (except for the
commands for crate control, that require to open the control connection with
the specific crate).
Upon completion of work with the connection, it is necessary to close it calling

LTR_Close().
Function action is similar to correct filling in the fields of the structure TLTR

using the line LTR_CSN_SERVER_CONTROL as the serial number and to calling
LTR_Open() and serves for convenience in order not to fill in manually.

Also can be executed and having filled in the fields of the structure TLTR and
having called LTR_Open(). This function is introduced for convenience in order
not to fill the fields in manually.

The function is available in ltrapi of version 1.31.0 or later versions.

Parameters:
hsrv — Control connection descriptor. ltrd_addr — IP-address of the computer
on which the service ltrd has been run, in 32-bit format. To use default value
the value LTRD_ADDR_DEFAULT can be transmitted.
ltrd_port — Number of the TCP port that will be used when connecting to the

service ltrd. To use the default port the value LTRD_PORT_DEFAULT can
be transmitted.

Returned value: Error code.

5.3.1.4 Opening of the control connection with the crate

Format: INT LTR_OpenCrate (TLTR *hcrate, DWORD ltrd_addr, WORD
ltrd_port, INT crate_iface, const char *crate_sn)
Description:

This function establishes the control connection with the crate by its serial
number (or with the first crate if serial number is not set).

The function enables to distinctly indicate the interface via which the
connection between the service ltrd and the crate is established, if the crate is
connected via two interfaces simultaneously (e.g. if the crate is configured and
connected over Ethernet, but also connected over USB in the set-up mode).
Generally, it is sufficient to indicate LTR_CRATE_IFACE_UNKNOWN as an
interface, that means that the crate can be connected via any interface. With
that if the crate is connected via two interfaces the opened connection will be
related to the crate using the interface that is the operating one for the crate,

43

i.e. via the interface that can exchange data with the crate modules that is
necessary for majority of programs.
Upon completion of work with the connection, it is necessary to close it calling

LTR_Close().
Function action is similar to correct filling in the fields of the structure TLTR

and to calling LTR_Open(). This function is introduced for convenience in order
not to fill the fields in manually.

The function is available in ltrapi of version 1.31.0 or later versions.
Parameters:
hcrate — Connection descriptor. ltrd_addr — IP-address of the computer on
which the service ltrd has been run, in 32-bit format. To use default value the
value LTRD_ADDR_DEFAULT can be transmitted.
ltrd_port — Number of the TCP port that will be used when connecting to the

service ltrd. To use the default port the value LTRD_PORT_DEFAULT can
be transmitted.

crate_iface — Value from en_LTR_CrateIface, indicating the interface via which
the crate must be connected. If the value LTR_CRATE_IFACE_UNKNOWN
is set, the crate can be connected via any interface.

crate_sn — Line with the serial number of the crate with which it is ncessary to
establish connection. If the line is empty, connection will be established
with the first connected crate

Returned value: Error code.

5.3.1.5 Opening of the connection with the set time-out

Format: INT LTR_OpenEx (TLTR *hnd, DWORD timeout)
Description:

This function is the same as LTR_Open(), but enables to distinctly indicate the
maximum set-up time of connection with ltrd.
Parameters:
hnd — Connection descriptor. timeout —Time in ms for connection opening. If
during the pre-set time connection with ltrd is not established, function will be
finished with an error.
Returned value: Error code.

44

5.3.1.6 Closing of connection

Format: INT LTR_Close (TLTR *hnd)
Description:

The function closes the previously opened connection using the functions
LTR_Open(), LTR_OpenEx(), LTR_OpenCrate() or LTR_OpenSvcControl() . With
any returned value after calling this function the respective descriptor of the
connection can not be already used without opening a new connection.

Parameters: hnd — Connection
descriptor.
Returned value: Error code.

5.3.1.7 Check if the connection is opened

Format: INT LTR_IsOpened (TLTR *hnd)
Description:

The function checks whether the connection that corresponds to the specified
descriptor, is currently opened by the client. If the connection is opened the
function returns LTR_OK, if it is closed — error code
LTR_ERROR_CHANNEL_CLOSED. This function does not check by any methods
whether this connection is currently valid, and its result is determined only by
the function calling sequence - whether the connection with the client was
successfully opened and whether this connection was closed.
Parameters: hnd — Connection
descriptor.
Returned value:
Error code (LTR_OK, if the connection is established).

45

5.3.2 Information type functions
Set of functions that enable to obtain general information on the service ltrd,

connected crates and exchange statistics. These functions can be used by any control
connection.

5.3.2.1 Acquisition of the ltrd service version.

Format: INT LTR_GetServerVersion (TLTR *hsrv, DWORD *version)
Description:

The function returns version number of the service ltrd, with which the control
connection is established.

In textual view the version of ltrd consists of four numbers separated by
points. The value returned by this function is a 32-bit value, each byte of which
corresponds to one part of the number of the version, separated by a point in
the textual entry, with that the higher-order byte corresponds to the main
number (the first number). E.g. 0x02010403 corresponds to the version 2.1.4.3.

Versions of the service ltrd start with 2.0.0.0 and higher, while the versions
with the higher-order number 1 were returned only by the previously used LTR
program.
Server.
Parameters:
hsrv — Control connection descriptor. version — In this variable the version of
the service ltrd is returned in the format described above.

Returned value: Error code.

5.3.2.2 Acquisition of serial numvers of the connected crates

Format: INT LTR_GetCrates (TLTR *hsrv, BYTE *csn)
Description:

The function returns the list of crate serial numbers with which the service ltrd
established connection (list of active crates). Obtained serial numbers can be
used to establish the control connection with the crates (for their configuration,
obtaining the module list, etc.) or connection with the modules.

This function can return max. LTR_CRATES_MAX of serial numbers (if more
crates are connected, only first LTR_CRATES_MAX will be returned). If number
of crates may exceed LTR_CRATES_MAX, you can use the function
LTR_GetCratesEx(), where there is no limitation of the number of crates to be
returned.

The function always returns different serial numbers, i.e. if the crate is
connected both over USB (in the set-up mode) and over Ethernet (in the
operating mode) the function will fill in only one element in the output array.

46

Parameters:
hsrv — Control connection descriptor.
csn —2D array with size [LTR_CRATES_MAX]

[LTR_CRATE_SERIAL_SIZE] bytes. Serial numbers of the connected crates
will be saved in this array (each line corresponds to its own crate serial
number). All LTR_CRATES_MAX of serial numbers are always filled in. If
the number of crates is less than LTR_CRATES_MAX, instead of serial
numbers after the last valid serial number the empty line will be written
(one symbol with null code)ю

Returned value:
Error code

5.3.2.3 Acquisition of the information on the connected crates

Format: INT LTR_GetCratesEx (TLTR *hsrv, DWORD max_crates, DWORD
flags, DWORD *crates_found, DWORD *crates_returned, CHAR serials[]
[LTR_CRATE_SERIAL_SIZE], TLTR_CRATE_INFO *info_list)
Description:

This function enables to obtain the list of crate serial numbers with which the
service ltrd established connection (list of active crates) with additional
information on these crates.

As opposed to LTR_GetCrates() the function does not limit the number of the
connected crates, information on which can be returned.

Also, as opposed to LTR_GetCrates(), if one crate is connected via several
interfaces, this function will return two entries about the crate, i.e. its serial
number will be indicated in the "serials" array twice, but with that in the
respective entries with the information on the crate different connection
interface will be indicated (can be changed with flags).

The function can be used with zero value of max_crates to obtain the number
of connected crates in order to create arrays of the required sizes and to call the
function for the second time to obtain information on all crates.

This function is only supported by the service ltrd. The function is available in
ltrapi of version 1.31.0 or later versions.

47

Parameters:
hsrv — Control connection descriptor. max_crates — Maximum number of
crates, information on which can be returned by the function.
flags — Flags from en_LTR_GetCratesFlags, controlling function operation.
crates_found — In this parameter the total number of connected crates is
returned. This value can exceed max_crates. If this function is not required the
null indicator can be sent. crates_returned — In this variable the number of valid
serial numbers, recorded in the array serials, is returned. This returned value
can not exceed the value transmitted in the parameter max_crates. If
max_crates is equal to zero, the null indicator can be transmitted as this
parameter.
serials — Array to store serial numbers of the connected crates. It must have

sufficient size to store max_crates of serial numbers (each serial number
is the line of LTR_CRATE_SERIAL_SIZE symbols). Upon function
completion the first crates_returned of serial numbers will be filled in. If
max_crates is equal to zero, the null indicator can be transmitted as this
parameter.

info_list — Array to store information on the connected crates. It must have
sufficient size to store max_crates of the structures TLTR_CRATE_INFO.
Each element corresponds to the serial number from serials with the same
number. If the information on crates is not required, the null indicator can
be transmitted.

Returned value: Error code.

5.3.2.4 Acquisition of the crate description

Format: INT LTR_GetCrateDescr (TLTR *hsrv, INT crate_iface, const char
*crate_sn, TLTR_CRATE_DESCR *descr, DWORD size)
Description:

The function enables to obtain the structure of TLTR_CRATE_DESCR type with
detailed description of the specified crate. Description of any connected crate
can be obtained via single control connection — it is not necessary to establish
individual control connection with the crate.

This function is only supported by the service ltrd (not supported by the
previously used LTR Server program).
Parameters:
hsrv — Control connection descriptor. crate_iface — Crate connection interface
(similar to the so-named parameter LTR_OpenCrate()).
crate_sn — Crate serial number (similar to the so-named parameter

LTR_OpenCrate()).
descr — The structure where crate description will be saved size —
Size of the structure transmitted as the parameter descr.

Returned value: Error code.

48

5.3.2.5 Acquisition of the statistics on the crate

Format: INT LTR_GetCrateStatistic (TLTR *hsrv, INT crate_iface, const char
*crate_sn, TLTR_CRATE_STATISTIC *stat, DWORD size)
Description:

The function returns additional parameters of the statistics, that is gathered
by the service ltrd, related to the specified crate, as the structure
TLTR_CRATE_STATISTIC.

This function is only supported by the service ltrd (not supported by the
previously used LTR Server program).
Parameters:
hsrv — Control connection descriptor. crate_iface — Crate connection interface
(similar to the so-named parameter LTR_OpenCrate()).
crate_sn — Crate serial number (similar to the so-named parameter

LTR_OpenCrate()).
stat — The structure where crate statistics parameters will be saved. size — Size
of the structure transmitted as the parameter stat.

Returned value: Error code.

5.3.2.6 Acquisition of the statistics on the module

Format: INT LTR_GetModuleStatistic (TLTR *hsrv, INT crate_iface, const char
*crate_sn, INT module_slot, TLTR_MODULE_STATISTIC *stat,
DWORD size)
Description:

The function returns additional parameters of the statistics, that is gathered
by the service ltrd, related to the specified module, as the structure
TLTR_MODULE_STATISTIC.

This function is only supported by the service ltrd (not supported by the
previously used LTR Server program).
Parameters:
hsrv — Control connection descriptor. crate_iface — Crate connection interface
(similar to the so-named parameter LTR_OpenCrate()).
crate_sn — Crate serial number (similar to the so-named parameter

LTR_OpenCrate()).
module_slot —Number of themodule slot (from LTR_CC_CHNUM_MODULE1 to
LTR_CC_CHNUM_MODULE16).
stat — The structure where crate statistics parameters will be saved. size — Size
of the structure transmitted as the parameter stat.

Returned value: Error code.

49

5.3.3 Crates control functions
Set of functions that implement common commands to control LTR crates. These

functions can be used only with the control connection with the crate.

5.3.3.1 Acquisition of the list of modules in the crate

Format: INT LTR_GetCrateModules (TLTR *hcrate, WORD *mid)
Description:

The function enables to obtain the list of modules' identifiers that are set in
the crate.

It is necessary to send the array of LTR_MODULES_PER_CRATE_MAX
elements, that will be filled in with the required values by the function, to the
function input.

Each element corresponds to its slot in the crate (mid[0] — identifier of the
module, inserted to the first slot, mid[15] — in the 16th slot) and in case of
successful function execution it is set on one of the values from en_LTR_MIDs.
If no module is inserted to the slot or if there is no slot, the value
LTR_MID_EMPTY will be set. If the module is found but its type is still not
determined, the value LTR_MID_IDENTIFYING will be returned.
Parameters:
hcrate — Descriptor of the control connection with the crate.
mid — Pointer to the array of LTR_MODULES_PER_CRATE_MAX elements where

identifiers of the installed modules will be returned in case of successful
execution.

Returned value: Error code.

5.3.3.2 Obtaining of the information on the type and interface of crate connection

Format: INT LTR_GetCrateInfo (TLTR *hcrate, TLTR_CRATE_INFO
*CrateInfo)
Description:

The function fills in the structure TLTR_CRATE_INFO with the information on
the crate with which the control connection is established.
Parameters:
hcrate — Descriptor of the control connection with the crate.
CrateInfo — In this structure the information on the crate is returned in case

of success.
Returned value: Error code.

50

5.3.3.3 Configuration of the crate synchronization connector lines

Format: INT LTR_Config (TLTR *hcrate, const TLTR_CONFIG *conf)
Description:

The function sets up the configuration of the SYNC synchronization connector
lines according to the parameters set in the structure TLTR_CONFIG. This
function is only applicable for the crates with this connector available (LTR-EU,
LTR-CU, LTR-CEU).
Parameters:
hcrate — Descriptor of the control connection with the crate.
conf — Configuration of the crate synchronization connector
lines.
Returned value: Error code.

5.3.3.4 Setting of the “START” label generation

Format: INT LTR_MakeStartMark (TLTR *hcrate, INT mode)
Description:

The function sets up the mode of "START" label generation by the crate. This
function only operates with the crates that support the standard synchro-label
generation mechanism (LTR-EU, LTR-CEU, LTR-CU). The crate can generate a
label both from external event and internal event — on command from a PC.

Function behavior slightly varies depending on the mode value.
If the mode LTR_MARK_INTERNAL is set up, when executing this function the

crate generates a single "START" label, then does not generate labels until the
next call of this function. I.e. in case of internal generation of "START" label it is
necessary to call this function twice, when the label must be generated.

Other modes corresponds to the external label generation. In this modes the
function just configures the crate so that it waits for the event set up in the
mode and generates a label in case of each this event.

To disable external label generation you can call this function indicating the
mode LTR_MARK_OFF.

If connection with the crate is closed without disabling label generation, the
crate will still generate labels until distinct disabling.

Parameters:
hcrate — Descriptor of the control connection with the crate.
mode — "START" label generation mode — value from en_LTR_MarkMode.
Returned value: Error code.

51

5.3.3.5 Start of “SECOND” label generation

Format: INT LTR_StartSecondMark (TLTR *hcrate, INT mode)
Description:

The function starts second label generation in the specified mode. This
function only operates with the crates that support the standard synchro-label
generation mechanism (LTR-EU, LTR-CEU, LTR-CU).

If the mode LTR_MARK_INTERNALis set up, once this function is called the
crate starts to generate a second label once per second (from the internal timer).
In other modes the crate waits for the external event and generates a second
label in case of each event.
Generation is stopped with the function
LTR_StopSecondMark().

If connection with the crate is closed without disabling second label
generation, the crate will still generate labels until distinct disabling.

Parameters:
hcrate — Descriptor of the control connection with the crate.
mode — "SECOND" label generation mode.
Returned value: Error code.

5.3.3.6 Stop of “SECOND” label generation.

Format: INT LTR_StopSecondMark (TLTR *hcrate)
Description:

When calling this function the crate stops generation of second labels that was
previously started with LTR_StartSecondMark()
Parameters: hcrate — Descriptor of the control connection
with the crate.
Returned value: Error code.

52

5.3.4 Functions of ltrd service control
Set of additional functions of the control connection related to control of operation of

the service ltrd.

5.3.4.1 Reset of the specified module

Format: INT LTR_ResetModule (TLTR *hsrv, INT crate_iface, const char
*crate_sn, INT module_slot, DWORD flags)
Description:

This function enables to reset any module via the control connection. Upon
this function execution the following actions are executed in the service:

This function can be useful when there is a not closed client connection with
the module that does not allow a new operating connection to be established
(the error LTR_WARNING_MODULE_IN_USE is returned). Calling of this function
enables to reset a not closed connection.

Also, the function can be useful if the program closes not having correctly
completed operation with the module, e.g. having remained data acquisition
started. Module reset enables to stop garbage transmission from the module
switching it to the initial state.

This function is only supported by the service ltrd (not supported by the
previously used LTR Server program).

Parameters:
hsrv — Control connection descriptor. crate_iface — Crate connection interface
(similar to the so-named parameter LTR_OpenCrate()).
crate_sn — Crate serial number (similar to the so-named parameter

LTR_OpenCrate()).
module_slot — Number of themodule slot (from LTR_CC_CHNUM_MODULE1 to

LTR_CC_CHNUM_MODULE16).
flags — Additional flags controlling function operation. Now they are not used

therefore the field must be always equal to zero.
Returned value: Error code.

53

5.3.4.2 Setting of the history log level

Format: INT LTR_SetLogLevel (TLTR *hsrv, INT level, BOOL permanent)
Description:

The function sets, messages of what level will be output to the history log by
the service ltrd. All messages with less important level will not be output.
Parameters:
hsrv — Control connection descriptor. level — Configurable level of output to
the history log — value from en_LTR_LogLevel.
permanent — If FALSE, changes concern only the current running of the service

ltrd. If TRUE — changes are saved in the settings and will be considered
after service re-start.

Returned value: Error code.

5.3.4.3 Acquisition of the current history log level

Format: INT LTR_GetLogLevel (TLTR *hsrv, INT *level)
Description:

The function returns the set output level to the history log of the service ltrd.
Parameters:
hsrv — Descriptor of the control connection. level — In this variable the set
history log level is returned — the value from en_LTR_LogLevel.

Returned value: Error code.

54

5.3.4.4 Setting of the operation parameter of the service ltrd

Format: INT LTR_SetServerParameter (TLTR *hsrv, DWORD param, void *val,
DWORD size)
Description:

The function configures one parameter from the settings of the service ltrd
operation. The format and the meaning of the value to be transmitted are
determined by the parameter code and described in the description of each
parameter. The parameter to be set up is applied immediately and save in the
settings of the service ltrd.

This function is only supported by the service ltrd (not supported by the
previously used LTR Server program).
Parameters:
hsrv — Control connection descriptor.
param — Parameter code — value from en_LTRD_Params.
val — Pointer to the data with configurable value. Format of data can depend

on the parameter and be specified in the parameter description.
size — Size of data to be transmitted as the parameter value (to which val

points).
Returned value: Error code.

5.3.4.5Reading of the operation parameters of the service ltrd.

Format: INT LTR_GetServerParameter (TLTR *hsrv, DWORD param, void
*val, DWORD *size)
Description:

The function reads one parameter from the settings of the service ltrd
operation. The format and the meaning of the value to be transmitted are
determined by the parameter code and described in the description of each
parameter.

This function is only supported by the service ltrd (not supported by the
previously used LTR Server program).
Parameters:
hsrv — Control connection descriptor.
param — Parameter code — value from
en_LTRD_Params
val — Pointer to data where parameter value will be saved. Format of data can
depend on the parameter and be specified in the parameter description.
size — Size of the array to which the variable val points. Different parameters
can require different size to store the value.
Returned value: Error code.

55

5.3.4.6 Re-start of the service ltrd.

Format: INT LTR_ServerRestart (TLTR *hsrv)
Description:

In case of successful execution of this command the service ltrd closes all
client connections and all connections with crates and starts operation from the
beginning, reading its settings again.

Consequently, the current control connection via which the command is
transmitted, becomes void - the only function, that can and must be called next,
is LTR_Close().
Parameters: hsrv — Control connection
descriptor.
Returned value: Error code.

5.3.4.7 Stop of the service ltrd.

Format: INT LTR_ServerShutdown (TLTR *hsrv)
Description:

In case of successful execution of this command the service ltrd closes all
client connections and all connections with crates and shuts down.

Consequently, the current control connection via which the command is
transmitted, becomes void - the only function, that can and must be called next,
is LTR_Close().
Parameters: hsrv — Control connection
descriptor.
Returned value: Error code.

56

5.3.5 Control functions for crate connection over Ethernet
These functions are used with the control connection. They enable to control the list

of entries with IP-addresses of crates of the service ltrd, and to execute commands to
establish and close connection between ltrd and the crates by IP-addresses using the
entries from this list.

5.3.5.1 Acquisition of the entries list with crate IP-addresses

Format: INT LTR_GetListOfIPCrates (TLTR *hsrv, DWORD max_entries,
DWORD ip_net, DWORD ip_mask, DWORD *entries_found, DWORD
*entries_returned, TLTR_CRATE_IP_ENTRY *info_array)
Description:

The function returns the list of entries with IP-addresses of the crates from
the settings of the service ltrd (both with established connection with the crate
and with not established connection). Also, with the entry the status of crate
connection, that corresponds to this entry, is returned.

The function enables to return not the full list of entries, but only those entries
addresses of which satisfy the pre-set filter — only those IP-addresses are
returned, that belong to the subnet configured by the standard method using
IP-address (ip_net) and the subnet mask (ip_mask). I.e. if the address
“192.168.1.0” and the subnet mask “255.255.255.0” are set, the entries with IP-
addresses in the form of “192.168.1.x” will be returned, where x - any value
within the range from 0 to 255.

If it is necessary to obtain all entries, null indicators can be transmitted as an
address and a mask.

To obtain information on the status of the specific entry you can set up the
required IP-address in full, and set up the mask equal to “255.255.255.255”

To obtain random number of IP-entries the function can be firstly called with
zero value of max_entries, in order to obtain number of entries in entries_found
and then you can specify the array to receive the required number of entries
and call the function again to obtain information on these entries.

57

Parameters:
hsrv — Control connection descriptor.
max_entries — Maximum number of entries, that can be received by the array
info_array
ip_net — IP-address of the network, that is used to filter the entries to be

returned, in 32-bit format.
ip_mask — Subnetmask to filter the entriesto be returned in

32-bit format.
entries_found — In this variable the total number of the found entries that satisfy

the filter condition, is returned. This value can exceed max_entries.
entries_returned — Number of entries that was returned in the array info_array.

In case of successful execution this value is equal to the least value of
max_entries и entries_found.

info_array — Array of the structures TLTR_CRATE_IP_ENTRY, where the found
entries with IP-addresses will be returned. This array must have sufficient
size to store all entries max_entries. If in max_entries a zero value is
transmitted, the null indicator can be transmitted as this parameter.

Returned value: Error code.

5.3.5.2 Adding of the entry with crate IP-address

Format: INT LTR_AddIPCrate (TLTR *hsrv, DWORD ip_addr, DWORD flags,
BOOL permanent)
Description:

The function adds the entry with the specified parameter to the list of entries
with IP-addresses of the crates of the service ltd.

To establish connection with the crate over Ethernet (using
LTR_ConnectIPCrate()) its IP-address must already be in the list of entries.

If the list already has the entries, this function only changes entry flags (similar
to LTR_SetIPCrateFlags()).
Parameters:
hsrv — Control connection descriptor.
ip_addr — IP-address of the crate in 32-bit format.
flags — Set of flags related to entry to be added. Combining of the values from

en_LTR_CrateIpFlags by OR.
permanent — If FALSE, changes concern only the current running of the service

ltrd. If TRUE — changes are saved in the settings and will be considered
after service re-start.

Returned value: Error code.

58

5.3.5.3 Deleting of the entry with crate IP-address

Format: INT LTR_DeleteIPCrate (TLTR *hsrv, DWORD ip_addr, BOOL
permanent)
Description:

The function deletes the entry with the specified IP-address from the list of
crate IP-addresses of the service ltrd.

With that no connection should be established with the respective crate (entry
status must differ from LTR_CRATE_IP_STATUS_ONLINE or
LTR_CRATE_IP_STATUS_CONNECTING), otherwise the function returns an
error. To delete the entry with the connected crate, firstly, you should disconnect
from the crate via LTR_DisconnectIPCrate().

If the specified entry is not available in the list, function will not influence the
list of addresses and immediately finish without an error.
Parameters:
hsrv — Control connection descriptor
ip_addr — IP-address of the crate in 32-bit format, the entry with which must

be deleted.
permanent — If FALSE, changes concern only the current running of the service

ltrd. If TRUE — changes are saved in the settings and will be considered
after service re-start.

Returned value: Error code.

59

5.3.5.4 Setting up of the connection with the crate using IP-address

Format: INT LTR_ConnectIPCrate (TLTR *hsrv, DWORD ip_addr)
Description:

The function is the command of the service ltrd, indicating that the service
should establish connection with the specified IP-address via Ethernet interface.
The entry with the specified address must be in the list of entries with crae IP-
addresses of the service (this list can be obtained using
LTR_GetListOfIPCrates()), otherwise the function returns an error.

This function finish means that the service received the command and started
to connect to the crate, but connection still can not be established. With that the
status of connection with the crate for the entry changes to
LTR_CRATE_IP_STATUS_CONNECTING.

Upon establishing connection this status changes to
LTR_CRATE_IP_STATUS_ONLINE in case of success connection or to
LTR_CRATE_IP_STATUS_ERROR in cse of an error that is the sign of operation
completion. Obtaining of the current connection status is possible by obtaining
the information on the netry using LTR_GetListOfIPCrates(),

Also, in case of successful connection the crate will appear in the list of active
crates that can be obtained using LTR_GetCrates() or
LTR_GetCratesEx().

If the crate is already connected during this function calling (connection status
LTR_CRATE_IP_STATUS_ONLINE) or connection is in progress (status
LTR_CRATE_IP_STATUS_CONNECTING), the function will be successfully
completed without execution of any actions.
Parameters:
hsrv — Control connection descriptor.
ip_addr — IP-address of the crate in 32-bit format, with which connection must
be established.
Returned value: Error code.

60

5.3.5.5Breaking of the connection with the crate using IP-address

Format: INT LTR_DisconnectIPCrate (TLTR *hsrv, DWORD ip_addr)
Description:

When calling this function the service breaks the connection with the crate
connected over Ethernet with the specified address. The crate disappears from
the list of active crates and the connection status for the entry with this IP-
address changes to LTR_CRATE_IP_STATUS_OFFLINE.

The entry with the same address must be in the list of entries with IP-
addresses of the crates of the service ltrd, otherwise the function returns an
error.

If the entry with the specified address is available but there is no active
connection (connection status differs from LTR_CRATE_IP_STATUS_ONLINE or
LTR_CRATE_IP_STATUS_CONNECTING), the function is successfully completed
without execution of any actions.
Parameters:
hsrv — Control connection descriptor.
ip_addr — IP-address of the crate in 32-bit format, with which connection must
be broken.
Returned value: Error code.

5.3.5.6 Setting up the connection with all crates with auto-connection attribute

Format: INT LTR_ConnectAllAutoIPCrates (TLTR *hsrv)
Description:

The function commands the service ltrd to establish the connection via
Ethernet interface with all crates, for entries with IP-addresses of which the flag
LTR_CRATE_IP_FLAG_AUTOCONNECT is set up.

With that connection is started only for those entries for which there is no
active connection, i.e. for the entries with the current status
LTR_CRATE_IP_STATUS_ONLINE or LTR_CRATE_IP_STATUS_CONNECTING
function calling does not have any effect.

Similar to LTR_ConnectIPCrate() function finish only means that the
connection process is started, and if necessary you can know that connection is
established by the change of the connection status of the respective entries (that
can be checked using
LTR_GetListOfIPCrates().
If there are noentries with the set up flag
LTR_CRATE_IP_FLAG_AUTOCONNECT, using which connection with the crate is
established, the function is successfully completed without execution of any
actions.
Parameters: hsrv — Control connection
descriptor.
Returned value: Error code.

61

5.3.5.7 Breaking of the connection with all crates connected over Ethernet.

Format: INT LTR_DisconnectAllIPCrates (TLTR *hsrv)
Description:

On this command the service ltrd closes all active connections with the crates,
connected via Ethernet interface. All crates will be deleted from the list of active
crates and all IP-addresses will change their connection status to
LTR_CRATE_IP_STATUS_OFFLINE.

If there were no crates connected over Ethernet when the function is called,
the function is successfully completed without execution of any actions.

Parameters: hsrv — Control connection
descriptor.
Returned value: Error code.

5.3.5.8 Configuration of the flags for entry with the crate IP-address

Format: INT LTR_SetIPCrateFlags (TLTR *hsrv, DWORD ip_addr, DWORD
flags, BOOL permanent)
Description:

The function changes the value of the flags, related to already available log
with IP-address, to the specified value. The entry with set IP-address must be
available in the list of entries of the service ltrd, otherwise the function will be
completed with an error.
Parameters:
hsrv — Control connection descriptor. ip_addr — IP-address of the crate in 32-
bit format, for entry with which the flags should be changed.
flags — New set of flags related to the entry. Combining of the values from

en_LTR_CrateIpFlags by OR.
permanent — If FALSE, changes concern only the current running of the service

ltrd. If TRUE — changes are saved in the settings and will be considered
after service re-start.

Returned value: Error code.

62

5.3.6 Functions of data exchange with modules
These functions are used to transmit and receive module's data. Generally, the user

does not need to use these functions directly, as to work with the modules (specific
modules) the functions from the designated libraries are used.

These functions are used only for connections with the modules and not applicable to
the control connections.

5.3.6.1 Data receiving from the module

Format: INT LTR_Recv (TLTR *hmodule, DWORD *data, DWORD *tmark,
DWORD size, DWORD timeout)
Description:

The function receives data from the module in 32-bit words in the special
format of LTR words. Besides, the function analyzes the information on the
received synchro-labels and on buffer overflow in the service ltrd, updating
values of the field TLTR::flags of the module descriptor and filling-in the array
tmark.

The function returns control either when receives the requested number of
words or after timeout. With that actual received number of words can checked
by the returned value.
Parameters:
hmodule — Descriptor of the connection with the module. data — Array where
the received words will be saved. It must have size of "size" of 32-bit words
tmark — Pointer to the array with size of "size" of 32-bit words, where values of

synchro-labels will be saved, that correspond to the received data. I.e. the
element tmark[i] corresponds to the received word data[i], indicating the
number of "START" and "SECOND" labels corresponding to this word.
Format of these words is described in the chapter on synchro-labels. If
synchro-labels are not used, you can transmit NULL as the parameter.

size — The requested number of 32-bit words that should be received from the
module.

timeout — Timeout for operation execution in milliseconds. Value 0 means the
default time-out value. If the requested number of words is not received
during the pre-set time, the function still will return control, having
returned the actual number of the received words as a result.

Returned value:
Negative value (less than zero) corresponds to the error code. The value greater
than or equal to zero corresponds to the actual number of the received words
that were stored in the array "data".

63

5.3.6.2 Data transmission to the module

Format: INT LTR_Send (TLTR *hmodule, const DWORD *data, DWORD size,
DWORD timeout)
Description:

The function sends data from to the module in 32-bit words in the special
format of LTR words.

The function returns control either when all data are recorded to the buffer
for transmission or after timeout. With that the actual number of words recorded
in the buffer for transmission can be checked by the returned value. I.e. the
returned value does not guarantee that this number of words was set for
transmission, but still these data may not reach the module by the moment of
function finish.
Parameters:
hmodule — Descriptor of the connection with the module.
data — Array containing data in the form of size 32-bit words that must be
transmitted to the module.
size — Number of words that must be transmitted to the module.
timeout — Timeout for operation execution in milliseconds. Value 0 means the
default time-out value. If there is no space to record the requested number of
words in the buffer for transmission during the pre-set time, the function still
will return control, having returned the actual number of words recorded in the
buffer as a result.
Returned value:
Negative value (less than zero) corresponds to the error code. The value greater
than or equal to zero corresponds to the actual number of the words recorded
in the buffer for transmission, that were set for transmission to the module.

5.3.6.3 Reading of the time of the last second label.

Format: INT LTR_GetLastUnixTimeMark (TLTR *hmodule, LONGLONG
*unixtime)
Description:

This functions returns time value that corresponds to the last found reception
of the extended "SECOND" label with absolute time when receiving data via this
connection using LTR_Recv().

This function operates only if the crate supports generation of the extended
"SECOND" label with indication of absolute time by any method. E.g. using the
time server that transmits the time over the protocol IRIG-B.

If the "SECOND" label with absolute time was not received the value 0 will be
returned.

Parameters:
hmodule — Descriptor of the connection with the module
unixtime — Absolute time value in seconds from January, 1, 1970.

(unixtime).
Returned value: Error code.

64

5.3.7 Auxiliary functions
5.3.7.1 Acquisition of the text error message

Format: LPCSTR LTR_GetErrorString (INT err)
Description:

The function returns the line that corresponds to the transmitted error code
In CP1251 coding for OS Windows or UTF-8 coding for OS Linux. The function
supports only error codes determined by the given library and returned by the
functions of the given library. The libraries for the specific modules can have
additional error codes and their own functions of receiving of the textual error
description that support these additional error codes.

Parameters: err — Error code.

Returned value:
Pointer to the line containing the message error.

5.3.7.2 Timeout default setup for connection

Format: INT LTR_SetTimeout (TLTR *hnd, DWORD tout)
Description:

The function sets up timeout by default for execution of operations for the
specified connection. When opening connection this timeout is equal to
LTR_DEFAULT_SEND_RECV_TIMEOUT.

For the control connection this timeout determines the time of execution of
any command (from request transmission to the service to response receiving).
For the connection with the module — it is timeout that is used in LTR_Recv()
or
LTR_Send(), if timeout zero value is transmitted in them.
Parameters:
hnd — Connection descriptor.
tout — Default time-out in ms.
Returned value: Error code.

	Contents
	Chapter 1
	What this document is about

	Chapter 2
	Distinguishing features of the document second version

	Chapter 3
	Installation and connection of the library to the project

	Chapter 4
	Common approach to operation with the library

	4.1 Functions call sequence
	4.2 Types of client connections
	4.2.1 Control connection with the service ltrd
	4.2.2 Control connection with the crate
	4.2.3 Connection with the specific module

	4.3 Multiple connection
	4.4 Acquisition of the list of connected crates and modules
	4.5 Format of IP-address assignment
	4.6 Synchro-labels
	4.6.1 Receiving and comparison of the synchro-labels with data
	4.6.2 Synchronization of several crates

	Chapter 5
	Constants, types of data and library functions

	5.1 Constants and tabulations.
	5.1.1 Constants and macro definitions.
	5.1.2 Error codes.
	5.1.3 Crate's processor client outputs connection mode
	5.1.4 Operating mode of the crate's DIGOUTx outputs.
	5.1.5 Synchro-label generation mode.
	5.1.6 Level of history log output by the service ltrd.
	5.1.7 Flags of the functions of acquisition of data on the connected crates.
	5.1.8 Adjustable parameters of the service ltrd.
	5.1.9 Numbers of channels for connection with the service ltrd
	5.1.10 Indicators of the communication channel ltrd for definite crate interface setting up
	5.1.11 Additional flags of the channel for communication with ltrd
	5.1.12 Connection status flags
	5.1.13 Modules' identifiers
	5.1.14 Crate types
	5.1.15 Crate connection interface
	5.1.16 Status of connection with the crate that corresponds to the entry with IP-address
	5.1.17 Flags corresponding to the entry with crate's IP-address
	5.1.18 Flags from the module description
	5.1.19 Crate operation mode
	5.1.20 FPGA status

	5.2 Data types
	5.2.1 Connection descriptor.
	5.2.2 Configuration of the synchronization connector lines.
	5.2.3 Information on the type and interface of crate connection
	5.2.4 Entry with the crate IP-address
	5.2.5 Crate statistics
	5.2.6 Module statistics
	5.2.7 Information on the crate and its firmware

	5.3 Function
	5.3.1 Functions of initialization and working with connection
	5.3.1.1 Initialization of the connection descriptor
	5.3.1.2 Connection opening
	5.3.1.4 Opening of the control connection with the crate
	5.3.1.5 Opening of the connection with the set time-out
	5.3.1.6 Closing of connection
	5.3.1.7 Check if the connection is opened

	5.3.2 Information type functions
	5.3.2.2 Acquisition of serial numvers of the connected crates
	5.3.2.3 Acquisition of the information on the connected crates
	5.3.2.4 Acquisition of the crate description
	5.3.2.5 Acquisition of the statistics on the crate
	5.3.2.6 Acquisition of the statistics on the module

	5.3.3 Crates control functions
	5.3.3.1 Acquisition of the list of modules in the crate
	5.3.3.2 Obtaining of the information on the type and interface of crate connection
	5.3.3.3 Configuration of the crate synchronization connector lines

	5.3.4 Functions of ltrd service control
	5.3.4.2 Setting of the history log level
	5.3.4.3 Acquisition of the current history log level

	5.3.5 Control functions for crate connection over Ethernet
	5.3.5.1 Acquisition of the entries list with crate IP-addresses
	5.3.5.2 Adding of the entry with crate IP-address
	5.3.5.3 Deleting of the entry with crate IP-address
	5.3.5.4 Setting up of the connection with the crate using IP-address
	5.3.5.5 Breaking of the connection with the crate using IP-address
	5.3.5.6 Setting up the connection with all crates with auto-connection attribute
	5.3.5.8 Configuration of the flags for entry with the crate IP-address

	5.3.6 Functions of data exchange with modules
	5.3.6.1 Data receiving from the module
	5.3.6.2 Data transmission to the module
	5.3.6.3 Reading of the time of the last second label.

	5.3.7 Auxiliary functions
	5.3.7.1 Acquisition of the text error message
	5.3.7.2 Timeout default setup for connection

	Без имени
	Без имени

