
User interface library of LTR27 module
Programmer manual

Multichannel data-acquisition systems

DAQ SYSTEMS DESIGN, MANUFACTURING & DISTRIBUTION

http://en.lcard.ru
en@lcard.ru

Revision 1.0.3
January 2010

http://en.lcard.ru
mailto:en@lcard.ru

Author of the manual:
A.V. Kodorkin

L-Card LLC
117105, Moscow, Varshavskoye shosse, 5, block 4, bld. 2

tel.: +7 (495) 785-95-19
fax: +7 (495) 785-95-14

Internet contacts:
http://en.lcard.ru/

E-Mail:
Sales department: en@lcard.ru
Customer care: en@lcard.ru

http://en.lcard.ru/
mailto:en@lcard.ru
mailto:en@lcard.ru

Revision history of this document.

Revision Date Notes to the updates
1.0.0 23.04.2006 The first revision available for user
1.0.1 21.11.2006 TLTR27 structure has been changed – module description has

been given as well as the module description reading
functions have been

changed
1.0.2 23.04.2007 the examples for supporting of error

LTR_WARNING_MODULE_IN_USE have been changed
1.0.3 14.01.2010 The information about submodules has been corrected.

The latest revision of this document is always being written on the CD-ROM included in the delivery package.
Moreover you can find the latest revision in the section of the files library on our website.

L-Card reserves the right to update the documentation without notifying the users.

http://en.lcard.ru/node/396

Contents

1. What this document is about. .. 5

2. General ideology of the user interface for manipulating with module LTR27. ... 6

3. Ltr27api.dll - library for manipulating with module LTR27. .. 7

3.1. Use of ltr27api.dll. ... 7

3.2. General approach to working with the interface functions of library ltr27api.dll. 7

3.3. Simple example. .. 8

4. Description of functions, structures and constants of ltr27api.dll library. ... 9

4.1. Constants ... 9

4.2. Structures ... 10

4.2.1. Structure TLTR27 .. 10

4.2.2. Structure of TINFO_LTR27.. 12

4.3. Function ... 14

4.3.1. Initialization functions of working with the module. .. 14

4.3.2. Functions to manipulate with module ADC ... 16

4.3.3. Information type functions .. 19

4.3.4. Auxiliary functions .. 20

5. Annex .. 21

5.1. Module interconnect protocol. Command and data formats. ... 21

5.1.1. Module interconnect protocol. .. 21

5.1.2. Formats of commands and data Format of data words: .. 21

1. What this document is about.

This document is a Programmer manual. The general ideology of software building for manipulating with
module LTR27 is provided as well as the detailed description of dll-library ltr27api.dll.

Any issues related to the signals connection, parameters and hardware operation principles are not considered
in this document. These issues are provided in the document LTR Crate System. User Manual. Moreover the current
document does not have the description of the libraries for handling of other types of modules and the crate as a
whole, they are provided in separate documents.

http://www.lcard.ru/download/ltr_en.pdf

2. General ideology of the user interface for manipulating with module
LTR27.

From the user software point of view the moduleLTR27 is a 16-channel 16-bit* ADC with configurable
sampling frequency. The module can be in one of the two following states: waiting state or data acquisition state.

In waiting state the module receives and processes the commands: reading information about module instance,
reading/writing of data acquisition parameters, test command and data acquisition state command.

In data acquisition state the module performs simultaneous capture of all 16 analog channels (in accordance
with configurated parameters) and outputs the values obtained. In addition, on any command the module stops
data acquisition and is switched in waiting state to process the received command.

Thus, there are three basic steps in manipulating with module LTR27:
- Receiving the information about the module instance.
- Setting up the parameters and starting of data acquisition.

- Reading and post-processing of ADC data.

Note: ADC effective bit depth depends on selected sampling frequency and varies about from 8 bits at frequency
of 1 kHz to 16 bits at frequency of 4 Hz. For more details about effective sampling frequency see document
ELECTRICAL MEASURING TRANSDUCERS OF H-27 TYPE.

3. Ltr27api.dll - library for manipulating with module LTR27.

Library ltr27api.dll presents the set of functions for manipulating with module LTR27. The library is written
based on api-function calls of basic library of working with ltr-crateltrapi.dll using programming language
Borland С++ and is come with source texts.

Attention: Strictly speaking, the library functions do not provide "thread safe" operation. So, for the sake of
good order, the user shall organize by himself in multi-threaded contexts the correct synchronization of interface
function calls in different threads (using, for example, , critical sections, mutexes and, etc.), if required.

3.1. Use of ltr27api.dll.
 To call the interface functions of library ltr27api.dll from your application the following is required:
to create the project in any of the development environment;
to insert files ltrapi.dl and ltr27api.dll in the project folder or the folder described in PATH environment
variable.
to add information on interface function call of dll-library and used data types to the project. The sequence

of actions and applied force may vary in different development environments: Borland C++/Borland C++ Builder
:

- Attach files LTR\LIB\BORLAND\ltr27api.lib, LTR\INCLUDE\ltr27api.h to the project. Microsoft
Visual C++ :

- Attach files LTR\LIB\MSVC\ltr27api.lib, LTR\INCLUDE\ltr27api.h to the project. Other
development environments:

- It is necessary to refer to the corresponding documentation of the development tool.

create and add the file containing the source text of the future program to the project; then you can write
the program calling the corresponding interface functions of dll-library.

3.2. General approach to working with the interface functions of library
ltr27api.dll.

 The following actions shall be made in order to interact with LTR27 module:
- Create the instance of the TLTR27 structure and initialize it by calling the function LTR27_Init().
- Make connection with the required module by calling the function LTR27_Open(). - Read the module

configuration by calling the function LTR27_GetConfig().
- Read the description of the module and installed submodules by calling function

LTR27_GetModuleDescription().
- Set the parameters of data acquisition and transmit them to the module using function

LTR27_SetConfig().
- Start ADC data acquisition using the function LTR27_ADCStart().
- Capture ADC data at times by calling function LTR27_Recv().
- Select ADC data of targeted submodule, apply the calibration coefficients and convert ADC code in

physical values by calling function LTR27_ProcessData().
- Stop ADC data acquisition by calling function LTR27_ADCStop().
- Close connection with the module by calling the function LTR27_Close().

3.3. Simple example.
//--
// This example describes the configuration of module LTR27 and collection
// of ADC 1024 samples with their subsequent correcting and displaying
//-- #include
<stdio.h>
#include "ltr\\include\\ltr27api.h"
#define NSAMPLES (2*LTR27_MEZZANINE_NUMBER*1024) int
main(void)
{
 INT res, size;
 TLTR27 ltr27;
 // initialize the structure fields with values by default
res=LTR27_Init(<r27); if(res==LTR_OK) {
 // make connection with the module in the first slot of crate.
 // for network address, network port of ltr-server and serial number
 // of crate the values by default should be used
 res=LTR27_Open(<r27, SADDR_DEFAULT, SPORT_DEFAULT, “”, CC_MODULE1);
if (res==LTR_WARNING_MODULE_IN_USE)
 {
 oem_printf(">> Warning, module Already Opened \n");
 res = LTR_OK;
 }
 if(res==LTR_OK) {
 // obtain module configuration
res=LTR27_GetConfig(<r27);
 if(res==LTR_OK) {

 // read the description of module and submodules
res=LTR27_GetModuleDescription(<r27, LTR27_ALL_DESCRIPTION); if(res==LTR_OK) {
 // select sampling frequency of 100 Hz
ltr27.FrequencyDivisor=9;
 // copy the calibration coefficients for(int i=0; i<
LTR27_MEZZANINE_NUMBER; i++) for(int j=0; j<4; j++)
ltr27.Mezzanine[i].CalibrCoeff[j]= ltr27.ModuleInfo.Mezzanine[i].Calibration[j];
 // transmit data acquisition parameters to the module
 res=LTR27_SetConfig(<r27);
 if(res==LTR_OK) {
 // start ADC data acquisition
res=LTR27_ADCStart(<r27);
 if(res==LTR_OK) {
 DWORD buf[NSAMPLES];
// capture ADC data
 size=LTR27_Recv(<r27, buf, NULL, NSAMPLES, 1000);
 if(size>0) {
 double data[NSAMPLES];
 // use calibration and convert in Volts
 res=LTR27_ProcessData(<r27, buf, data, &size, 1, 1);
 // display the measured voltage
if(res==LTR_OK) { int i=0;
while(i<size)
 for(int j=0; j<2* LTR27_MEZZANINE_NUMBER; j++; i++)
printf(“channel%d %f %s\n”,
 j+1, data[i], ltr27.Mezzanine[j/2].Unit);
}
 }
 // stop ADC
res=LTR27_ADCStop(<r27);
 }
 }

 }
 }
 // close connection LTR27_Close(<r27);
 }
 }
 // output error message
 if(res!=LTR_OK) printf(">> %s\n", LTR_GetErrorString(res)); }

4. Description of functions, structures and constants of ltr27api.dll
library.

The present section has detailed description of constants, structures and interface functions included in ltr27api.dll
library.

Note: The recommended sequence of interface function calls see in General approach to working with the interface
functions of dll-library.

4.1. Constants

Constant Value Description

Constants used in data received analysing.
LTR27_DATA_CORREC

TION 1 In data processing use the correction coefficients.
LTR27_DATA_FORMA

T_CODE 0 Present resulting data in ADC codes.
LTR27_DATA_FORMA

T_VALUE 2 Present resulting data in physical values.

Constants used in reading of module and submodules description

FLAG_MODULE_DESC
RIPTION 1 Read module description

FLAG_MEZZANINE1_D
ESCRIPTION 2 Read description of the mezzanine in slot 1

FLAG_MEZZANINE2_D
ESCRIPTION 4 Read description of the mezzanine in slot 2

FLAG_MEZZANINE3_D
ESCRIPTION 8 Read description of the mezzanine in slot 3

FLAG_MEZZANINE4_D
ESCRIPTION 16 Read description of the mezzanine in slot 4

FLAG_MEZZANINE5_D
ESCRIPTION 32 Read description of the mezzanine in slot 5

FLAG_MEZZANINE6_D
ESCRIPTION 64 Read description of the mezzanine in slot 6

FLAG_MEZZANINE7_D
ESCRIPTION 128 Read description of the mezzanine in slot 7

FLAG_MEZZANINE8_D
ESCRIPTION 256 Read description of the mezzanine in slot 8

FLAG_ALL_MEZZANI
NE_DESCRIPTION 510 Read description of all mezzanines

FLAG_ALL_DESCRIPTI
ON 511 Read the description of the module and all mezzanines

Errors codes

LTR_OK 0 Executed without errors.

LTR27_ERROR_SEND_
DATA -3000 Error in data submission to the module

LTR27_ERROR_RECV_
DATA -3001 Error in receiving data from the module

LTR27_ERROR_RESET
_MODULE -3002 Module no replay to RESET command.

The rest of constants
LTR27_MEZZANINE_N

UMBER 8 Number of slots to install submodules.

4.2. Structures

4.2.1. Structure TLTR27
Structure TLTR27 – is the basic structure containing all required information about the module

configuration and channel state. This structure is used in all library functions of communication with the module.
The definition of the structure is in file ltr27api.h and is given below:

typedef struct {

//**** service information
 TLTR ltr;
 BYTE subchannel;
 //**** module configurations

BYTE FrequencyDivisor;

struct TMezzanine {

CHAR Name[16];

CHAR Unit[16];

double ConvCoeff[2];

double CalibrCoeff[4]; }

Mezzanine[MEZZANINE_NUMBER];
} TLTR27;

 Prior to start to manipulate with the module it is necessary to: create the instance of this structure and
initialize the fields with values by default by calling function LTR27_Init().

Field name Intended purpose of the field

Ltr
The instance of structure TLTR servicing for providing communication channel with the
module. The field is updated automatically when library interface functions are called and
does not require any attention from the user PC side.

www.lcard.ru/download/ltrapi_en.pdf

Subchannel
The field required to check continuity of received data stream. The field is updated
automatically when library interface functions are called and does not require any attention
from the user PC side.

Frequency
Divisor

ADC sampling frequency divisor Range of values - from 0 to 255.

ADC sampling frequency = 1000 Hz
Sampling frequency divisor + 1

The field serves to set sampling frequency in calling function LTR27_SetConfig() and to
aligning of ADC code to 16-bit range when calling function LTR27_ProcessData().
The field is filled by the user or automatically when calling function LTR27_GetConfig().

Mezzanine[I].
Name

Type mezzanine in module slot (i+1)
The field is filled by the user or automatically when calling function LTR27_GetConfig().

Mezzanine[I].
Unit

Physical values to measure which the mezzanine in module slot (i+1)
is provided.
The field is filled by the user or automatically when calling function LTR27_GetConfig().

Mezzanine[i].
ConvCoeff[0]

Coefficient of scale for reconversion of ADC code of the mezzanine in slot (i+1) in physical
values. Used when calling function
LTR27_ProcessData().

The field is filled by the user or automatically when calling function LTR27_GetConfig().

Field name Intended purpose of the field

Mezzanine[i].
ConvCoeff[0]

Coefficient of zero offset for reconversion of ADC code of the mezzanine in slot (i+1) in
physical values. Used when calling function LTR27_ProcessData().

The field is filled by the user or automatically when calling function LTR27_GetConfig().

Mezzanine[i].
CalibrCoeff[0]

Coefficient of scale for correcting of ADC code of the mezzanine first channel in
 slot (i+1). Used when calling function LTR27_ProcessData().
Field is filled by the user.

Mezzanine[i].
CalibrCoeff[1]

Coefficient of zero offset for correcting of ADC code of the mezzanine first channel in
 slot (i+1). Used when calling function LTR27_ProcessData().
Field is filled by the user.

Mezzanine[i].
CalibrCoeff[2]

Coefficient of scale for correcting of ADC code of the mezzanine second channel in
 slot (i+1). Used when calling function LTR27_ProcessData().
Field is filled by the user.

Mezzanine[i].
CalibrCoeff[3]

Coefficient of zero offset for correcting of ADC code of the mezzanine second channel in
 slot (i+1). Used when calling function LTR27_ProcessData().
Field is filled by the user.

Values accepting with fields Mezzanine[i].Name, Mezzanine[i].Unit, Mezzanine[i]. ConvCoeff[0..1] after

call function LTR27_GetConfig().

Type of
mezzanine Name Unit ConvCoeff[0] ConvCoeff[1]

H27_U01 “U01” “B” 2.0/0x8000 -1.0

H27_U10 “U10” “B” 20.0/0x8000 -10.0

H27_U20 “U20” “B” 20.0/0x8000 0.0

H27_I5 “I5” “mA” 5.0/0x8000 0.0

H27_I10 “I10” “mA” 20.0/0x8000 -10.0

H27_I20 “I20” “mA” 20.0/0x8000 0.0

H27_R100 “R100” “Оhm” 100.0/0x8000 0.0

H27_R250 “R250” “Оhm” 250.0/0x8000 0.0

H27_T “T” “mV” 100.0/0x8000 -25.0

Module is not
identified

“EMPTY” or “UDEF” “” 100.0/0x8000 0.0

ADC data correction is performed by the formula:

 y = a*x + b

y – ADC corrected code

х – ADC uncorrected code

а – coefficient of scale

b – coefficient of zero offset

Note: Prior to correct ADC data it is necessary to perform ADC code aligning to 16-bit range that is performed
automatically in function LTR27_ProcessData().

ADC code conversion in physical values is performed by the formula:
 y = a*x + b

y – value in physical values
х – ADC code (corrected or uncorrected) а – coefficient of scale
b – coefficient of zero offset

4.2.2. Structure of TINFO_LTR27
Structure TINDO_LTR27 – contains description of the module and installed submodules. Filling of the

structure fields is performed when calling function LTR27_GetModuleDescription().
Definition of structure TINFO_LTR27 and accompanied to it structures TDESCRIPTION_MODULE,

TDESCRIPTION_CPU, TDESCRIPTION_MEZZANINE are presented in files ltr27api.h and
ltrapitypes.h and are given below:
 typedef struct _DESCRIPTION_MODULE_
{
 BYTE CompanyName[16];

 BYTE DeviceName[16];
 BYTE SerialNumber[16];
 BYTE Revision;
 BYTE Comment[COMMENT_LENGTH];
} DESCRIPTION_MODULE;

Field name Intended purpose and permissible values of the field

CompanyName Symbols string containing the name of module manufacturer.

DeviceName Symbols string containing the name of the module.

SerialNumber Symbols string containing the module serial number.

Revision Symbol denoting the device revision.

Comment Symbols string containing the additional information about the module.

typedef struct _DESCRIPTION_CPU_
{
 BYTE Active;
BYTE Name[16];
double ClockRate;
 DWORD FirmwareVersion;
 BYTE Comment[COMMENT_LENGTH];
} DESCRIPTION_CPU;

Field name Intended purpose and permissible values of the field

Active
Structure fields validity flag. The values different from 0 inform that the rest fields of
the structure have been filled correctly.

Name Symbols string containing the name of control controller mounted on the module.
ClockRate Control controller operation frequency.

FirmwareVersion 32 control controller х-bit word containing the software version downloaded in the
controller.

Bit field Purpose
31..24 High-order byte of software version.
23..16 Low-order byte of software version.
15..8 High-order byte of software build

number.
7..0 Low-order byte of software build

number

Comment String of symbols containing the additional information about software

typedef struct _DESCRIPTION_MEZZANINE_
{
 BYTE Active;
 BYTE Name[16];
 BYTE SerialNumber[16];
BYTE Revision; double Calibration[4];
 BYTE Comment[COMMENT_LENGTH];
} DESCRIPTION_MEZZANINE;

Field name Intended purpose and permissible values of the field

Active
Structure fields validity flag. The values different from 0 inform that the rest fields of the
structure have been filled correctly.

Name Symbols string containing the name of the mezanine.

SerialNumber Symbols string containing the mezanine serial number.

Revision Symbol denoting the mezzanine revision.

Calibration

Mezzanine calibration coefficients.

Coefficient
index

Intended purpose

0 Scale coefficient of the mezzanine first channel

1 Coefficient of zero offset of the mezzanine first channel

2 Scale coefficient of the mezzanine second channel

3 Coefficient of zero offset of the mezzanine second channel

Comment Symbols string containing the additional information about the mezzanine.

typedef struct
{
 TDESCRIPTION_MODULE Module;
 TDESCRIPTION_CPU Cpu;
 TDESCRIPTION_MEZZANINE Mezzanine[MEZZANINE_NUMBER];
} TDESCRIPTION_LTR27;

Field name Intended purpose and permissible values of the field

Module Description of the module instance: name, serial number, revision.

Cpu Description of control controller: name of the controller, software version.

Mezzanine
Description of mezzanines mounted in the module: name, serial number, revision,
calibration coefficients.

4.3. Function
All interface functions of library ltr27api.dll, except function LTR27_GetErrorString(), as the first

parameter accept the pointer to instance of structure TLTR27.
Moreover all interface functions have the same type of returned value- INT. The returned value informs on

the result of function execution. Negative values indicate the occurrence of error. Zero value corresponds to
successful termination of the function excepting the functions LTR27_Recv(). Positive values are defined for
function LTR27_Recv() only and define the number of received data.

4.3.1. Initialization functions of working with the module.
Functions of these sub-group carry out the actions on establishment and break of the connection with the

module.

4.3.1.1. Initialization of the structure fields

Format: INT LTR27_Init(TLTR27 *module)

Purpose: Initialization of the structure fields by the default values.

This function shall be called once for each created instance of TLTR27 structure before the rest functions of
the library are called.

Transmitted parameters:

 module – pointer to instance of TLTR27 structure.

Returned value:

 Error code.
4.3.1.2. Establishing the connection with the module

Format: INT LTR27_Open(TLTR27 *module,

 DWORD saddr, WORD sport, CHAR *csn, WORD cc)

Purpose: Establish the connection with the module.

This function shall be called before starting communication with the module. Selection of module is
performed in compliance with functions transferred to functions. If the transmitted instance of the structure
indicates open connection to the module, then this connection will be automatically closed and an attempt will
be made to reconnect.

Transmitted parameters:

• module – Pointer to instance of structure TLTR27.
• saddr – Network address of LTR-server - is a packaged in 32-bit unsigned integer (bigendian) ip-

address of the computer on which the LTR-server is started.

Example: If ip-address of the computer is “a.b.c.d”, the field shall have value
(a<<24)|(b<<16)|(c<<8)|(d<<0).

Note: If LTR-server is started on the same computer as the user program, the constant
SADDR_DEFAULT can be used as network address.

 sport – Network port of LTR-server – is a packaged in 16-bit unsigned integer (bigendian) number
of port to which LTR-server is configurated. By default LTR-server listens
SPORT_DEFAULT.

 csn - Serial number of LTR-crate - the string with length of up to SERIAL_NUMBER_SIZE
symbols.

 If the serial number length is less than SERIAL_NUMBER_SIZE, the line shall end by zero.

Note: If spare line is specified as the serial number, an attempt to set the connection with the
first detected LTR-crate will be performed.

 cc - Module logical number – 16-bit unsigned integer identifying the targeted module LTR27.

Permissible values: CC_MODULE1 – module located in crate first slot, CC_MODULE2 –
module located in crate second slot,.., CC_MODULE16 – module located in crate 16th slot.

Returned value:

 Error code.

http://www.lcard.ru/download/ltrapi_en.pdf
http://www.lcard.ru/download/ltrapi_en.pdf
http://www.lcard.ru/download/ltrapi_en.pdf
http://www.lcard.ru/download/ltrapi_en.pdf
http://www.lcard.ru/download/ltrapi_en.pdf
http://www.lcard.ru/download/ltrapi_en.pdf
http://www.lcard.ru/download/ltrapi_en.pdf

4.3.1.3. Loss of connection with the module

Format: INT LTR27_Close(TLTR27 *module)

Purpose: Break the connection with the module.

This function shall be called after completion of data exchange with the module for correct closure of the
connection and release of system resources reserved upon the connection opening.

Transmitted parameters:

 module – pointer to instance of structure TLTR27.

Returned value:

 Error code.

4.3.1.4. The status of connection with the module

Format: INT LTR27_IsOpened(TLTR27 *module)

Purpose: Define the status of connection with the module.

The function enables defining of the module connection status:

Transmitted parameters:

 module – pointer to instance of structure TLTR27.

Returned value:

 Error code.

4.3.2. Functions to manipulate with module ADC
This subgroup functions perform operations required in manipulating with module ADC

 4.3.2.1. Reading of module ADC settings

Format: INT LTR27_GetConfig(TLTR27 *module)

Purpose: Reading of current module ADC settings

The function allows to read the current module ADC settings.

Transmitted parameters:

 module – pointer to instance of structure TLTR27.

In the event of the function successful completing the information on the ADC frequency divisor,
the type of mezzanines installed, units of physical quantities and conversion coefficients from
the ADC codes to physical quantities for each mezzanine will be updated in the transmitted
module structure.
Thus, the following fields of the structure will be updated:

- module->FrequencyDivisor
- module->Mezzanine[0..7].Name
- module->Mezzanine[0..7].Unit
- module->Mezzanine[0..7].ConvCoeff[0..1]

Returned value:

 Error code.

4.3.2.2. Writing of module ADC settings

Format: INT LTR27_SetConfig(TLTR27 *module)

Purpose: Writing of module ADC settings.

This function allows to set module ADC configurations in accordance with which the data acquisition will
be performed.

Transmitted parameters:

 module – pointer to instance of structure TLTR27.

In the event of the function successful performing the information on the ADC sampling
frequency divisor will be transmitted to the module.

Thus, the values of the following structure fields will be transmitted:

- module->FrequencyDivisor

Returned value:

 Error code.

4.3.2.3. ADC start-up

Format: INT LTR27_ADCStart(TLTR27 *module)

Purpose: Module ADC start-up.

This function allows to switch the module from waiting state into data acquisition state.

Transmitted parameters:

 module – pointer to instance of structure TLTR27.

Returned value:

 Error code.

4.3.2.4. ADC stopping operations

Format: INT LTR27_ADCStop(TLTR27 *module)

Purpose: To stop the module ADC.

This function allows to switch the module from data acquisition state into waiting state.

Transmitted parameters:

 module – pointer to instance of structure TLTR27.

Returned value:

 Error code.

4.3.2.5. Receiving of data from the module

Format: INT LTR27_Recv(TLTR27 *module, DWORD *des_data, DWORD *tmark,

 DWORD size, DWORD timeout)

Purpose: Receiving of data from the module.

This function receives and monitors the data parity. It is used in combination with function
LTR27_ProcessData() performing post-processing of received data (aligning to range of values of 16-bit
ADC, using the calibrations, conversing of ADC code in physical quantities)

Transmitted parameters:

• module – pointer to instance of structure TLTR27.
• des_data – pointer to array of DWORD[size] type where the received data from the module will be

inserted. Each element of the output array contains uncalibrated data of one of the ADC channels and
several service information fields. Regardless of the ADC operation parameters the order of the data is
always fixed:

- data of 1-st channel of mezzanine located in 1-st module slot;

- data of 2-nd channel of mezzanine located in 1-st module slot;

- and etc.

- data of 2-nd channel of mezzanine located in 8-th module slot;

So, each 16th element of the array contains samples of the same ADC channel. To convert an array of
received data to an ADC sample array or an array of physical quantities and to use the calibrations, the
function LTR27_ProcessData () is used.

 tmark – pointer to array of DWORD[size]type where the marks of time corresponding to received
data will be inserted. Thus, the element of array tmark[i] containing the mark of time
correposponds to each element of array data[i]. If there is no need in time tags, NULL can be
sent as the parameter.

size – number of samples which should be received from the module.

timeout – interval of time in milliseconds during which the receiving of requested samples quantity is
expected. If data from module are not received within the specified period, the exit a function
will occur.

Returned value:

 Values less than zero should be considered as error codes. The values greater than zero or equal to zero
should be considered as quantity of words actually received from the module within the allowed time.

4.3.2.6. Module data processing

Format: INT LTR27_ProcessData(TLTR27 *module, DWORD *src_data,
double *dst_data, DWORD *size, BOOL calibr, BOOL value)

Purpose: Received data processing.

The function performs the received data processing using LTR27_Recv():

- aligning of ADC code to 16-bit range

- ADC data calibration

- conversion of ADC code in physical quantities

http://www.lcard.ru/download/ltrapi_en.pdf

Transmitted parameters:

• module – pointer to instance of structure TLTR27.
• src_data – pointer to array of DWORD[size] type containing the data received using the function

LTR27_Recv() and are to be processed
• dst_data – pointer to array of double[size] type where the output data will be transmitted in. The

sequencing of data corresponds to the sequencing of data in input buffer src_data.

 size – at output, defines the number of samples contained in array src_data,

at output, defines the number of data processed and transmitted in array dst_data

 calibr – the flag selecting the calibration coefficient usage mode.

Value Description

0 The calibration will not be applied to the output data.

1
The calibration will be applied to the output data. The corresponding fields of
structure TLTR27 will be used as calibration coefficients.

 value – flags selecting output data format.

Value Description

0
Output data will be presented as ADC samples aligned to 16-bit range. Thus,
in output array the data in format with floating point accepting the value within
the range from –32768.0 to 32768.0 will be inserted.

1
The output data will be conversed in physical quantities. The corresponding
fields of structure TLTR27 will be used as conversion coefficients.

Returned value:

 Error code.

4.3.3. Information type functions
This subgroup functions allow to obtain information about the module.

4.3.3.1. Reading of module and submodules description.

Format: INT LTR27_GetDescription(TLTR27 *module, WORD flags)

Purpose: Reading of module and submodules description

The function allows to obtain the description of the module and/or installed mezzanines.

Fields TLTR27->ModuleInfo are filled

Transmitted parameters:

 module – pointer to instance of TLTR27 structure.

flags – flags indicating the fields of structure ModuleInfo to be filled:

Returned value:

 Error code

4.3.4. Auxiliary functions
4.3.4.1. Interface with the module testing

Format: INT LTR27_Echo(TLTR27 *module)

Purpose: Interface with the module testing

The test function allows to check functionality of communication channel with the module. In performing of
this function the package of "empty" commands is transmitted to the module which it shall response on. In
the event of correct response of the module the interface with the module is proper.

 Transmitted parameters:

 module – pointer to instance of structure TLTR27.

Returned value:

 pointer to the constant string containing the message on error.

4.3.4.2. Text message on the error

Format: LPCSTR LTR27_GetErrorString(INT error)

Purpose: Receive message on error in text.

Function returns the string containing message on error corresponding to error code transferred to function.

Transmitted parameters:

 error – error code.

Returned value:

 pointer to the constant string containing the message on error.

5. Annex

5.1. Module interconnect protocol. Command and data formats.
This section describes the information about low-level protocol on communication with the module LTR27

and about the format of data involving in this communication. All features of the protocol and data format are taken
into account when writing the ltr27api.dll library and do not require the understanding of the programmer using
the functions of this library. The section is intended for general acquaintance, as well as for the users who intend
to implement the module interconnect protocol in their software.

5.1.1. Module interconnect protocol.
On energizing and exiting the reset condition (for details see LTR Crate System. User Manual) the module

is switched in waiting state in which it can receive and process host-computer commands. On ADC start command
arrival the module is switched in data acquisition mode. Being in this state, the module performs parallel
digitization of all 16 analog channels (in accordance with the specified sampling frequency divisor) and output the
accumulated values to the host computer. Any command coming at this time stops the ADC data acquisition, stops
transmission of the accumulated values to the host computer, and switches the module to the waiting
mode(command loss does not occur during such switching and immediately starts to be processed after switching).

All commands and data received and transmitted by the module contain a parity bit which serves as a sign of
reliability of the received information.

Waiting mode. All commands are the same size equal to one 32-bit word. Bit fields of the command contain
the code of operation and data required for its performing. The module shall response on each received command
(regardless of its validity) by sending one 32-bit word as follows:

- data in the event when the operation requires some kind of reading
- positive confirmation in the event when the operation is successfully completed
- negative confirmation in the event when: the command implementation failure, parity error in

receiving the command or receiving the unsupported command
Data acquisition mode. ADC data are transmitted to host-computer in frames by 16 of 32-bit words

containing the samples of all 16 channels regardless of availability on the mezzanines board. Data of 1-st channel
of mezzanine located in 1-st module slot are transmitted first; - data of 2-nd channel of mezzanine located in 8-th
module slot are transmitted last.

To speed up exchange with host-computer the module in waiting mode is capable to buffer up to 128
commands. The processing of buffered commands is performed in their enqueuing order.
So, the host-computer is capable to sent commands to module in small blocks and to wait receipt of responses for
the whole block.

5.1.2. Formats of commands and data Format

of data words:
DDDDDDDD DDDDDDDD 0000MMMM 11P0SSSS
Bit is left-to-right in order of descending of bit number.
S – subchannel number
P – parity bit
M – module number in crate
D – subchannel data

Note:

Subchannel data contain the code with varied number of significant bits depending on selected sampling
frequency. However, the calibration coefficient contained in eeprom of mezzanines have been calculated for
ADC having 16effective bits of data. So, prior to use calibration it is necessary to align code ADC to 16- bit
range using the following formula:

http://www.lcard.ru/download/ltr_en.pdf

 16 - bit ADC code = 32767 * (ADC code received from the module)
250* (Sampling frequency divisor + 1)

Format of command words and positive confirmation words:
DDDDDDDD DDDDDDDD 1000MMMM 11PCCCCC
Bit is left-to-right in order of descending of bit number.
С – command code
P – parity bit
M – module number in crate
D – data depending on command code

Negative confirmation:
11111111 11111111 1000MMMM 11P01000
Bit is left-to-right in order of descending of bit number.
P – parity bit
M – module number in crate

Parity:
Prior to calculate the parity bit the mask is set for command word or data word - 11111111 11111111
00000000 11011111. The parity bit is calculated as the sum of all bits on module 2:
P=COMMAND_DATA_WORD&0xFFFF00DF;
P^=(P>>16);
P^=(P>>8);
P^=(P>>4);
P^=(P>>2);
P^=(P>>1);
P&=1;

Data(to the module,
from the
module)

Command
code Description

XXXXXXXX XXXXXXXX
XXXXXXXX XXXXXXXX

00000

Echo
Empty command allows to check functionality of interface and
module control controller.
X – has no value and is not changed with the module during the
command performing.

XXXXXXXT XXXXXXXX

XXXXXXXT XXXXXXXX

00001

SetFlags
The command allows to set the module operation control flags.
T – test mode flag. If the flag is set then in switching in data
acquisition mode instead of ADC actual data will be
transmitted value of internal incremented counter.
X – has no value and is not changed with the module during the
command performing.

XXXXXXXX XXXXXXXX
XXXXXXXX XXXXXXXX

00010

StopADC
The command switches the module in waiting mode.
X – has no value and is not changed with the module during the
command performing.

XXXXXXXX XXXXXXXX
XXXXXXXX XXXXXXXX

00011

StartADC
The command switches the module in data acquisition mode.
X – has no value and is not changed with the module during the
command performing.

XXXXXSSS XXXXXXXF
XXXXXSSS XXXXXXXF

00111

Mezzonine EEPROM Write Enable/Disable
The command of enabling/disabling of writing in mezzanine
eeprom.
S – selection of mezzanine.

0 – mezzanine in 1-st module slot.
1 – mezzanine in 2-nd module slot.
….
7 – – mezzanine in 8-th module slot.

F – flag enabling writing in mezzanine eeprom.
0 – disable writing
1 – enable writing

X – has no value and is not changed with the module during the
command performing.

AAAAAAAA XXXXXXXX
AAAAAAAA DDDDDDDD

010SS

Read AVR memory
Command to read byte from controller memory.
S – selection of block from which the reading will be performed.

0 –internal
 RAM
 AVR
 storing
 the local
variables.
Block size -
256 bytes.
1 – reserve.
2 – reserve.
3 – internal block of AVR flash-memory storing the module
descriptor. Block size - 256 bytes.

A – byte address in block

D – referenced byte
X – has no value and is not changed with the module during the
command performing.

AAAAAAAA DDDDDDDD
AAAAAAAA DDDDDDDD

011SS

Write AVR memory
Command to write byte in controller memory.
S – selection of block in which the writing will be performed.

0 – block of internal RAM of AVR memory storing the local
variables. Block size - 256 bytes.
1 – reserve.
2 – reserve.
3 – reserve.

A – byte address in block

D – referenced byte
X – has no value and is not changed with the module during the
command performing.

AAAAAAAA XXXXXXXX
AAAAAAAA DDDDDDDD

10SSS

Read Mezzanine EEPROM
Command to read byte from mezzanine eeprom.
S – selection of mezzanine.

0 – mezzanine in 1-st module slot.
1 – mezzanine in 2-nd module slot.
….
7 – – mezzanine in 8-th module slot.

A – address of byte for reading

D – referenced byte
X – has no value and is not changed with the module during the
command performing.

AAAAAAAA DDDDDDDD
AAAAAAAA DDDDDDDD

11SSS

Write Mezzanine EEPROM
Command to write byte in mezzanine eeprom.
S – selection of mezzanine.

0 – mezzanine in 1-st module slot.
1 – mezzanine in 2-nd module slot.
….
7 – – mezzanine in 8-th module slot.

A – address of byte for writing

D – referenced byte

X – has no value and is not changed with the module during the
command performing.

Module control block address space:

Block number
controller
memory

Description

0 Internal controller RAM storing the local variables.
Address Size Access Description

0 1
reading/
writing

ADC sampling frequency divisor
Range values - 0...255
Sampling frequency = 1000 Hz/(Divisor +1)

1 255
reading/
writing

Reserve

1 Reserve
2 Reserve
3 Controller internal ROM storing the description of the module

Address Size Access Description
0 128 reading Reserve

128 16 reading Name of manufacturer (L-CARD)
144 16 reading Name of the device (LTR27)
160 16 reading Serial number
176 16 reading Type of control controller (ATMega8515)
192 4 reading Controller operation bit-timing frequency
196 4 reading Software version
200 1 reading Module revision
201 53 reading Comments
254 2 reading Block checksum

 Mezzanines address space:
See description of modules H-27.

	1. What this document is about.
	2. General ideology of the user interface for manipulating with module LTR27.
	3. Ltr27api.dll - library for manipulating with module LTR27.
	3.1. Use of ltr27api.dll.
	3.2. General approach to working with the interface functions of library ltr27api.dll.
	3.3. Simple example.

	4. Description of functions, structures and constants of ltr27api.dll library.
	4.1. Constants
	4.2. Structures
	4.2.1. Structure TLTR27
	4.2.2. Structure of TINFO_LTR27

	4.3. Function
	4.3.1. Initialization functions of working with the module.
	4.3.2. Functions to manipulate with module ADC
	4.3.3. Information type functions
	4.3.4. Auxiliary functions

	5. Annex
	5.1. Module interconnect protocol. Command and data formats.
	5.1.1. Module interconnect protocol.
	5.1.2. Formats of commands and data Format of data words:

