
LTR210
Programmer manual

Multichannel data-acquisition systems

DAQ SYSTEMS DESIGN, MANUFACTURING & DISTRIBUTION

http://en.lcard.ru
en@lcard.ru

Revision 1.0.5
September 2014

http://en.lcard.ru
mailto:en@lcard.ru

2

Author of the manual:
Alexey Borisov

L-Card LLC
117105, Moscow, Varshavskoye shosse, 5, block 4, bld. 2

tel.: +7 (495) 785-95-19
fax: +7 (495) 785-95-14

Internet contacts:
http://en.lcard.ru/

E-Mail:
Sales department: en@lcard.ru
Customer care: en@lcard.ru

LTR210 Module © Copyright 2016, LLC "L-Card". All rights reserved.

http://en.lcard.ru/
mailto:en@lcard.ru
mailto:en@lcard.ru

3

Table 1: Current document revisions

Revision Date Description

1.0.0 23.04.2013
Full revision of this document (preliminary
data)

1.0.1 14.06.2013

Description of new version of synchronization
threshold, additional bit mode set-up,
outputting-to-interface rate are added. All field
names are finalized to the library version

1.0.2 25.06.2013
AFC adjustment procedure description is
added.

1.0.3 19.08.2013
Description of measurement and null offset
adjustment capability is added.

1.0.4 02.06.2014

Description of library connection for projects
with 64-bit compilers MSVC, Embarcadero C++
Builder and MinGW is added.

1.0.5 10.09.2014
The problem to connect the library to the
projects is discussed in the individual
document.

4

Contents
1. What this document is about... 5

2. Library installation and connection to the project .. 6

3. General approach to working with the library ... 7
3.1 General algorithm to working with the module .. 7
3.2 Downloading of the module FPGA firmware ... 8
3.3 Module setting ... 9
3.4 Frame record and output concept ... 13
3.5 Data acquisition in the frame-based acquisition mode .. 15
3.6 Analysis of the accepted frame status ... 15
3.7 Module operation control via periodic status (live signal).. 16
3.8 Continuous data acquisition mode .. 17
3.9 The peculiarities of data calibration by the module ... 18
3.10 AFC correction.. 18
3.11 Null offset measuring and adjustment... 19
3.12 Invocation of library functions from different treads ... 19

4. Constants, types of data and library functions ... 20

4.1 Constants and enumerations.. 20
4.2 Data types. ... 29
4.3 Functions .. 35

4.3.1.1 Module handle initialization.. 35
4.3.1.2 Opening connection to module. ... 35
4.3.1.3 Closing connection to module. ... 36
4.3.1.4 Checking for opening connection to module. .. 36
4.3.1.5 Checking for module FPGA firmware downloading. ... 36
4.3.1.6 Downloading of the module FPGA firmware. .. 37
4.3.2.1 Setting storing in module. ... 37
4.3.2.2 Setting of specified ADC acquisition frequency. .. 37
4.3.2.3 Setting of specified frame spacing frequency. .. 38
4.3.3.1 Start of data acquisition. ... 38
4.3.3.2 Stopping of data acquisition.. 39
4.3.3.3 Program initiation of frame acquisition. .. 39
4.3.3.4 Waiting for asynchronous event from the module. .. 39
4.3.3.5 Data receiving from the module. .. 40
4.3.3.6 Processing of the words received from the module. .. 41
4.3.4.1 Null offset measurement .. 41
4.3.4.2 Acceptance of the previous interval upon acceptance of the last word. 42
4.3.4.3 Receiving error message.. 42
4.3.4.4 Downloading of factors to FPGA... 42

5

Chapter 1

What this document is about

This document assumes that the user is familiar with the documents “Starting operating with
the LTR Crate System. Software issues.“ and “Software for the LTR system”, where the main
operating principles of the software for LTR crates are described.

This document is mainly intended for the programmers who are going to code for operation
with LTR210 module using library ltr210api provided by the "L-Card" Company.

The problem of library connection to the user's project is under consideration in this
document as well as interface functions provided by the library and types used and basic
approaches to use these functions are described in detail herein.

The library itself is written in C language and all function and type declarations are provided
in C language. However, all bindings to all other software languages are only envelopes over
other C libraries and all functions, types and parameters save their values for other software
languages. Therefore this document is useful for users that code in other software languages.

The problems related to module characteristics and signals connection are out of scope of
this document and the operating principles of the module itself are come up in general only. The
mentioned above problems are described in the relevant chapter of the document "LTR Crate
System. User manual”, the user must be familiar with prior to start reading this document.

http://www.lcard.ru/download/ltr_soft_getting_started_en.pdf
http://www.lcard.ru/download/ltr_soft_getting_started_en.pdf
http://www.lcard.ru/download/ltr_cross_sdk_en.pdf
http://www.lcard.ru/download/ltr_en.pdf
http://www.lcard.ru/download/ltr_en.pdf

6

Chapter 2

Library installation and connection to the
project

Application of the libraries for manipulating with the LTR crate system is described in the
document “Starting operating with the LTR crate system. Software issues.”.

http://www.lcard.ru/download/ltr_soft_getting_started_en.pdf

7

Chapter 3

General approach to working with the library

3.1 General algorithm to working with the module

This section describes the typical sequence of actions during operation of LTR210 module.
Each step is described in details in the following chapters. The typical sequence of actions is as
follows:

1. Create the instance of the structure TLTR210 representing the module handle. The
module handle contains the information on the module and is used when accessing all
other functions.

2. Initialize the handle fields using LTR210_Init()

3. Make connection with targeted module with the function
LTR210_Open().

4. Check whether the module FPGA firmware is downloaded via the function
LTR210_FPGAIsLoaded(). If the firmware is not downloaded, then download it calling the
function LTR210_LoadFPGA().

5. Fill the necessary fields with module configurations of module handle substructure Cfg
and call LTR210_SetADC() to record configurations in the module.

6. If required, own null may be measured for additional adjustment of escape via
LTR210_MeasAdcZeroOffset().

1. Starting data acquisition using LTR210_Start().

2. Data acquisition and processing depending on the mode as described below

3. Upon completion of operation make stopping data acquisition with
 the
LTR210_Stop().

4. Close connection with the module by calling the function LTR210_Close().

3.1.1 Module operation in the frame-based acquisition mode

Typical data acquisition and processing cycle in the frame-based acquisition mode is as
follows:

1. Waiting for data arrival from the module via LTR210_WaitEvent().
2. Determine what kind of data has arrived via the event type (parameter event):

8

• If no data arrived within the specified period then we shall return to paragraph 1 to
wait for further data. Upon initiated periodic status sending the last status
acceptance time may be checked to identify facts of the module failure.

• If the periodic module status (live signal) is accepted, then analyze status (if
necessary) and proceed to paragraph 1.

• If the beginning of recorded frame is accepted, then proceed to paragraph 3.

3. Acceptance of readings of the frame in quantity of State.RecvFrameSize with the
LTR210_Recv().

4. Processing of received frame using LTR210_ProcessData().

5. Analysis of accepted frame status to define validity of accepted frame. User-specific
processing and proceeding to paragraph 1.

3.1.2 Module operation during continuous thread input

The typical data acquisition and processing cycle is similar to most of ADC modules and is as
follows:

1. Receiving of set number of readings using LTR210_Recv().

2. Processing of received readings using LTR210_ProcessData().

3.2 Downloading of the module FPGA firmware

LTR210 module is not capable of FPGA firmware storage in internal non-volatile memory,
thus it is recommended that the firmware is previously downloaded to the firmware for module
operation.

As a rule, firmware downloading to the module is the primary action subject to execution
after module connection via LTR210_Open(). However, as FPGA firmware after downloading is
saved in the module until power reset, it should be redownloaded, if it was downloaded during
the previous module operation. The function LTR210_FPGAIsLoaded() is used for check whether
the firmware is downloaded. If this function has returned LTR_OK then the firmware is already
downloaded and you may proceed to the module setting. Otherwise the firmware shall be
downloaded via the function LTR210_LoadFPGA().

Function LTR210_LoadFPGA() takes the firmware file name as one of parameters. File
ltr210_fpga.rbf containing the firmware is supplied complete with the library ltr210api. Besides
upon the library creation the last version of the firmware in OC Windows is integrated into the
library as a resource which allows to omit the separate firmware file storage. Downloading of
the firmware integrated into the library is executed upon transfer of the blank string or null
pointer as the file name. As for ОС Linux the firmware file is downloaded to the
/usr/share/ltrapi/ltr210 directory during installation from supplied packages, and upon
indication of the blank file name the file located in the same route is used.

It should be noted that in LTR210_LoadFPGA() a pointer to the callback function (callback)
that shall be called each time the data block from the firmware file was successfully written to
FPGA may be transferred. It allows for downloading indicator realization in the program, if
required. Full size firmware file in bites, quantity of successfully written bites and a pointer to

9

user-specific data which may be transferred to LTR210_LoadFPGA(), are regularly transferred to
the callback function. Initially the callback function shall be called immediately after successful
opening of file (or resource downloading) of written zero-size bites, and finally - after successful
downloading of files of size in written bites equal to the firmware size. In case of failure
LTR210_LoadFPGA() immediately returns failure code as the result without calling of the
callback function. If the downloading indicator is not required then the null pointer may be
transferred as the function pointer.

3.3 Module setting

If the FPGA firmware was downloaded then module setting should be set at the next stage.
Module setting is performed in the same manner for the most of other LTR modules: initially

values of all module parameters are written in corresponding field of the module handle
structure, then the function LTR210_SetADC() which transfers values of these fields to the
module is called.

It should be noted that all fields relating to module setting are integrated in structure of
TLTR210_CONFIG type (module handle Cfg). These fields only can be changed by the user
manually in module handle during normal operation and only these fields affect parameters
recorded by LTR210_SetADC(). The following parameters are defined during the module setting:

• ADC acquisition frequency (section Set-up of ADC acquisition frequency)

• ADC channels configurations (section ADC channels setting)

• Frame size and pre-history for the frame-based acquisition mode (section Setting of the
received frame parameters)

• The synchronization event whereby the frame is acquired (section Synchronization event
setting)

• Thread operating LTR210 set-up in a group (section Operation of few modules LTR210 in a
group)

Upon completion of LTR210_SetADC() some parameters being derivative of configurations
from TLTR210_CONFIG are calculated. These parameters are filled in corresponding structure
fields of module state TLTR210_STATE type (module handle State field). For example, resultant
ADC acquisition frequency (Hz) is calculated based on ADC frequency dividers and decimation
factors, and filled in the AdcFreq field.

The module shall be set at least once per year prior to initiation of data recording.
Besides, a part of the module parameters may be modified upon acquisition run:
• ADC channel measurement ranges

• ADC channel measuring mode

• Analogue synchronization level

• Frame frequence at periodic acquisition

To modify these parameters "just-in-time" you should equally modify required fields of the
structure configurations and call LTR210_SetADC().

10

3.3.1 Set-up of ADC acquisition frequency

Both channels of the module ADC always operate in parallel at the same conversion
frequency that may reach up to 10 MHz (for each channel). ADC acquisition frequency is set by
two parameters:

• ADC conversion frequency divider. Frequency 10 MHz is divisible by a divider equal to the
value of the field AdcFreqDiv+1. Value AdcFreqDiv may be from 0 to
LTR210_ADC_FREQ_DIV_MAX-1.

• Data decimation factor. Data shall be decimated from ADC to ensure lower acquisition
frequency in FPGA. This factor is set by the field AdcDcmCnt. Only one reading shall be
recorded from readings AdcDcmCnt+1 to the module buffer. Value AdcDcmCnt may be
modified in a range from 0 to LTR210_ADC_DCM_CNT_MAX-1.

Hence, resulting acquisition frequency for each channel ADC shall be equal to

 Hz

Installation of essential values of fields AdcFreqDiv and AdcDcmCnt may require application
of the function LTR210_FillAdcFreq() which select these values such that the ADC acquisition
frequency is the closest to the specified one indicated in corresponding function parameter.

After invocation of LTR210_SetADC() the value corresponding to the actual ADC acquisition
frequency is filled in the field AdcFreq of the module structure.

Set acquisition frequency does not depend on the number of enabled ADC channels.

3.3.2 ADC channels setting

Each LTR210 module has two channels handling the conversion in parallel. Recording may be
enabled either by any channel, or by both channels simultaneously. Each channel configurations
are integrated in structure TLTR210_CHANNEL_CONFIG. The array of structures consisting of 2
elements which each element corresponds to the required channel is the field of Ch structure
with module configurations.

The following can be configurated for each channel independently:

• Whether the record is enabled for this channel. Defined by the field Enabled.

• Range for this field (field Range).
• Channel operating mode (field Mode): open input (continuous steady component), closed

input (interrupted steady component), or measurement of eigen null.

• Upper and lower synchronization levels in corresponding synchronization mode (section
Synchronization event setting)

• Operating mode of special bit integrated into the reading thread corresponding to the
data channel (section Setting of additional bit mode in the data thread from ADC).

11

3.3.3 Setting of the received frame parameters

In a frame-by-frame mode of data acquisition which is the main mode for the LTR210
module, reading output is executed in blocks herein referred to as frames. Frame output is
executed only in case of synchronization event.

Number of points per channel in the frame is set by the field FrameSize. Herewith a part of
the frame readings corresponds to measurements immediately prior to the synchronization
event, and another part - to ADC readings immediately after this event. Frame readings
corresponding to the pre-event period resulting in output of this frame are called event pre-
history. The pre-history size at a rate of points per channel is set via parameter HistSize (may be
equal to 0).

Frame size constraints depending on record mode are described in section Frame record and
output concept.

The Frame state, which contains information about the frame validity and other different
events occurred during recording and frame output, is always sent after the last frame word.
The frame state should always be verified to ensure conclusion of received data validity.

Therefore, the frame consists of Nch * FrameSize + 1 words, where Nch is a quantity of
enabled channels (1 or 2). After recording of the module configuration via LTR210_SetADC()
calculated frame size is saved in the field RecvFrameSize of the module state structure. Value of
this field may be used further upon data acquisition from the module.

3.3.4 Synchronization event setting

In a frame-by-frame mode upon invocation of the function LTR210_Start() the module is
switched to the specified condition standby mode, and only in this condition the data frame
would be transferred to the module interface. This condition called the synchronization event is
set via the field SyncMode. The condition itself should be set prior to invocation of
LTR210_Start() at the stage of the module configuration.

The following synchronization event variations are possible:

• On command from PC. This command is sent via the function LTR210_FrameStart(). Upon
command a data frame output shall be executed.

• Via rising or falling edge of analogue signal in one of two channels in respect of preset
synchronization level. Synchronization level is set separately for each channel via two
levels — upper (field SyncLevelH) and lower hysteresis level (field SyncLevelL). Two levels
enable false positive avoidance even at noisy signal. Rising edge is a signal transition
through the upper level assuming that it was lower than the lowest level. Falling edge is a
transition lower than the lowest level in case the signal was higher that the upper level.
Preset levels should be within the specified range for this channel. Undoubtedly, the
upper level should be not lower than the lower one. Whereby the channel record used for
analogue synchronization may be prohibited, if only other channel data is of interest, but
acquisition range and mode should be set correctly.

• On rising/falling edge of digital signal at the SYNC input. It should be noted that the mode
is intended for synchronization from external source of digital signal that differs from
another module LTR210. For operation of a number of modules LTR210 in a group on the

12

principle "master-slaves" there is a special configuration for the module operation in a
group.

• Periodic frame acquisition. In this mode the synchronization event is generated by the
module hardware at specified frequency. This frequency is determined by the field
FrameFreqDiv and is equal to fframe = FrameFreqDiv106 +1 Hz. After invocation of
LTR210_SetADC() calculated frequency in Herz is filled in the field FrameFreq of the
module state structure. Function LTR210_FillFrameFreq() may be used to fill the field
FrameFreqDiv.

It should be noted that in case of synchronization event following after occurrence of the
synchronization event prior to record completion and further frame output to the interface,
then this event shall be discarded. The previous frame shall be successfully transferred, but the
missing event notification flag shall be set as its status flag LTR210_STATUS_FLAG_SYNC_SKIP.

It must be separately noted that SyncMode=LTR210_SYNC_MODE_CONTINUOUS is a specific
case. Upon this value the module is set for continuous acquisition mode which is described in
details in section Continuous data acquisition mode.

3.3.5 Operation of few modules LTR210 in a group

As for the module LTR210 it is possible to integrate some modules in a thread on the
"master-slaves" principle. The field GroupMode is intended for the mode set-up. By default this
field is equal to LTR210_GROUP_MODE_INDIVIDUAL which corresponds to the module
operation apart from the rest.

In case of module operation in a group one module should be set as the master by setting
GroupMode = LTR210_GROUP_MODE_MASTER. The master module traces synchronization
events in accordance with specified value of the field SyncMode upon initiation of record.
Detecting synchronization event the master module not only transfers the frame to the
interface with crate but also generates a pulse in the synchronization line. Any value of
SyncMode, apart from LTR210_SYNC_MODE_CONTINUOUS may be set for the master module.

Slave modules must be connected with the master module one by one via SYNC inputs (for
detailed information refer to the document "LTR Crate System. User manual"). That means, if
there are master module M and two slave modules S1 and S2, then M may be connected with
S1, and S1 with S2. he field GroupMode = LTR210_GROUP_MODE_SLAVE shall be installed for all
slave modules. Whereby the field SyncMode has no value — the slave module always runs
frame acquisition by a signal from the master module.

Modules may be set randomly. However initiation of data record via LTR210_Start() should
be initially executed for all slave modules, and then - for master module to ensure that the first
synchronization event is not lost by any slave module.

3.3.6 Data output to interface rate setting

In case of synchronization event recorded data is read out of the circular buffer and
transferred to the module → crate interface at specified rate. Maximum rate is determined by
the crate type wherein the module is inserted. For LTR-U-1 it is equal to 200 Kwords/s, for the
rest crates - 500 Kwords/s. This rate determines recorded frame output time and effects
minimum interval of synchronization event sequence which shall not be missed, and maximum

http://www.lcard.ru/download/ltr.pdf

13

size of recorded frame in case automatic record delay is not on (for more detailed information
refer to section Frame record and output concept).

The rate may be explicitly set via the field IntfTransfRate. Rate 500 KWords/s is set by
default. Whereby, if set value exceeds maximum permitted rate for crate (if the rate is 500
KWords/s and LTR-U-1), then the library automatically records correct value. I.e. maximum
permitted rate is used for the applied crate.

Explicit indication of rate may be used in case of a large number of modules LTR210, for
which the frame output time may intersect over time, to prevent excess maximum capacity
crate → computer.

Example: Suppose LTR-EU-16 with 16 modules LTR210, connected to the Ethernet interface,
is used. If all modules simultaneously transfer recorded frame at the rate 500 KWords/s, then
total rate shall be 8 MWords/s (24 MBite/c) which exceeds maximum crate transfer rate via
Ethernet (about 10 MBite/s or 2.5 MWords/s). I.e. crate can not transfer data to PC at the same
rate as it acquires it; at specific size of frames the internal crate buffer may be overloaded. In
such case output rate to interface for modules may be set as 100 KWords/s, which shall reduce
overall flow rate up to 1.6 MWords/s.

Hence in case of large amount of modules one should always estimate total transfer rate of
data from all crate modules (as well as some crates if they are connected to one network) taking
into consideration other types of module (not LTR210) and, if required, explicitly reduce data
output rate to interface to omit overloading of internal crate buffer.

3.3.7 Setting of additional bit mode in the data thread from ADC

Additional data bit is transferred with ADC reading in the module LTR210. You may set what
exactly this bit would display specifically for each ADC channel via the field DigBitMode. For
example, this bit may display level at the SYNC inlet that allows for using this inlet for
synchronous input of one digital bit, if required. Other possibilities are described in
e_LTR210_DIG_BIT_MODE specifying the mode for this bit.

In the processing of data via LTR210_ProcessData() value of this bit is saved in the structure
array with additional information (if non-zero pointer was transferred as a parameter
data_info). Each structure corresponds to its report generated from processed data which
allows for execution of one-to-one correspondence.

3.4 Frame record and output concept

Compared to the majority of other "L-CARD" ADC the main operating mode of the module
LTR210 does not assume continuous data acquisition. Instead of this, upon invocation of
LTR210_Start() the module triggers data record to the internal circular buffer in SRAM of the
module with capacity of 16 MWords (defined as constant LTR210_INTERNAL_BUFFER_SIZE) and
waits for occurrence of specified synchronization event.

Only in case of synchronization event the module outputs data frame to the module → crate
interface (hereinafter referred to as interface) in accordance with frame parameters described
in section Setting of the received frame parameters.

Immediately after the frame transfer via the interface the module is ready for the next frame
output upon the synchronization event. All synchronization events which occurred from the
moment of the frame output to the interface (moment of occurrence of corresponding sync

14

event) to the moment of output completion shall be lost, whereby the frame status shall be
indicated with the flag LTR210_STATUS_FLAG_SYNC_SKIP.

It should be noted that the rate of interface between the module and the crate is limited
(200 KWords/s for LTR-U-1 and 500 KWords/s for other crates). Besides it may be additionally
limited with the help of special configuration, if required, (section Data output to interface rate
setting). Hence, frame-to-interface output rate may significantly exceed time of frame recording
to the internal module buffer.

The module, by default, executes continuous recording to internal buffer. In this mode in
case of specific frame size and ADC acquisition frequency, it may be that the process of reading
recording to the circular buffer is in advance of the process of reading out of the buffer to the
circle, and a part of transferred frame shall be filled with new data. Accordingly, in this case a
part of the transferred frame data shall be invalid. This fact is displayed in the frame status by
flag LTR210_STATUS_FLAG_OVERLAP.

Rate of data recording to the buffer is equal to Nch*facq, where facq is the acquisition
frequency (section Set-up of ADC acquisition frequency) and Nch is the number of channels
enabled for record. If recording rate is less than reading rate, then the size FrameSize may be
equal to any value up to . Constant LTR210_FRAME_SIZE_MAX

specifies maximum frame size which may be set in one enabled channel, corresponding to size
of the internal buffer reduced by 512 words, or the size of blocked record in the module SDRAM.

If recording rate exceeds the reading rate, then time of frame transfer via interface shall be
less than recording time of the entire circular buffer plus the frame size after deduction of pre-
history, to prevent overwriting. I.e. inequality shall be performed

where S = LTR210_FRAME_SIZE_MAX, fintf is the rate of data-to-interface output.
If the pre-history size is set in formula as a portion of the entire frame n size: HistSize = n *

FrameSize, where n from 0 to 1, then the formula may be rewritten into more convenient form.
Where appropriate to identify maximum frame size at specified ADC acquisition frequency, rate
of data-to-interface output and pre-history percentage, then the formula shall be as follows:

Table of results of this formula for some typical cases is set out in the document "Crate

system LTR. User Manual".
In case set frame sizes require identification of maximum acquisition frequency, then the

formula shall be as follows:

To enable setting of the full-size buffer at acquisition frequencies up to maximum, the

automatic delay of recording-to-circular-buffer mode is set. This mode is set at the module
configuration via the flag LTR210_CFG_FLAGS_WRITE_AUTO_SUSP in the field Flags of
configuration structure. In this mode upon synchronization event data is recorded to the
internal buffer till the end of the frame, afterwards recording process shall be automatically
stopped. Whereby record shall be proceeded only after completion of output of the entire
frame to interface, and rewriting is impossible.

http://www.lcard.ru/download/ltr_en.pdf
http://www.lcard.ru/download/ltr_en.pdf

15

On the plus side, in the automatic record delay mode a frame of size up to
LTR210_FRAMENch_SIZE_MAX may be recorded despite of ADC reading frequency. On the negative side,
if the-prehistory is of null size, then time required for pre-history recording shall pass after
completion of the frame-to-interface output prior to occurrence of the next synchronization
event. In continuous record mode in the event occurred immediately after completion of
transfer of previous frame to the interface, the frame shall be always successfully recorded
notwithstanding of the pre-history size.

Hence to omit no event in case of continuous record, an interval between the closest
synchronization events shall be:

and in automatic record delay mode:

3.5 Data acquisition in the frame-based acquisition mode

As previously described, there is no continuous data thread from module in standard
operating conditions, and the data is transferred asynchronously frame by frame. Besides apart
from data frames, the module can periodically transfer its status word (for more detailed
information refer to section Module operation control via periodic status (live signal)). As such
data acquisition procedure slightly differs from other LTR modules. At first, it is advised to wait
for the event of any data receipt from the module. The function LTR210_WaitEvent() waiting for
data receipt from the module during timeout, analyzing this word and returning information of
the type of received data in parameter event, enables this.

If this is the beginning of the frame (LTR210_RECV_EVENT_SOF), then it is recommended to
read the data frame similar to the procedure regarding the LTR modules: initially read
RecvFrameSize of words received from the module via LTR210_Recv(), then process them using
LTR210_ProcessData(). If necessary, the frame may be acquired and/or processed not entirely,
but in blocks of less size. However it should be noted that only after processing of the last block
the frame status enabling conclusion of validity of received data.

It is essential to note that the first word of the frame upon transmission from module to
crate/PC is specifically denoted and LTR210_WaitEvent() returns LTR210_RECV_EVENT_SOF just
after the beginning of the frame is detected. If LTR210_WaitEvent() is called in the middle of half
received frame, then words of incomplete frame shall be discarded.

Also LTR210_Recv(), as opposed to similar functions of the rest modules, upon detection of
the frame end, shall immediately return data till the end of the frame, even if more data was
required and timeout has not run out yet.

3.6 Analysis of the accepted frame status

As it was previously noted, apart from words with ADC readings the frame status which
enables conclusion on validity of the frame data is transferred in the frame. Information of the
frame status is returned by function LTR210_ProcessData() in the form of structure of type
TLTR210_FRAME_STATUS.

16

Value of the field Result enables making general conclusion on whether the end of the frame
is found and, if so, on data validity in received frame. If the word with the frame status was not
found, then the field Result is equal to LTR210_FRAME_RESULT_PENDING (for example, if the
user processes the frame partially). If the word of the frame status is found, then Result =
LTR210_FRAME_RESULT_OK, if any data is valid, or LTR210_FRAME_RESULT_ERROR, if a part of
data is damaged.

The field Flags contains full information of the frame status in the form of bit-by-bit
combination of the flag set and may serve for more detailed analysis of the frame status.
Particularly, these flags enable identification of reasons that caused data damage, if the value
Result = LTR210_FRAME_RESULT_ERROR was returned.

The following flags refer directly to the received frame:

• LTR210_STATUS_FLAG_OVERLAP indicates that recording process is in advance of the
reading process and a part of data in the frame was rewritten. It cannot be claimed which
data in the frame are valid and which is not. The field Result is set in
LTR210_FRAME_RESULT_ERROR. For more details of the event cause refer to section
Setting of the received frame parameters.

• LTR210_STATUS_FLAG_INVALID_HIST indicates that the synchronization event has
occurred earlier than HistSize of points for each channel was recorded, and the pre-history
in the received frame is not valid. The field Result is set in
LTR210_FRAME_RESULT_ERROR; however in the absence of other error flags it may be
assumed that a part of the frame related to the period after the sync event is valid. In the
continuous record to the buffer such situation may occur only in case of synchronizat6ion
event immediately after the beginning of record via LTR210_Start() and HistSize ̸= 0 and
only in the initial frame if record is enabled. If automatic record delay is triggered the flag
may be set in case the following synchronization event has occurred earlier than HistSize
of points for each channel was recorded upon and after completion of the previous frame
output to the interface.

• LTR210_STATUS_FLAG_SYNC_SKIP indicates that during record and output of the frame to
the interface one or few synchronization events which have been discarded occurred, as
the previous frame output has not been finished yet. This flag does not affect data validity
and, correspondingly, value of the field Result.

Besides flags contain information:

• Which channels enable record.

• PLL module capture state. Besides in absence of capture attribute PLL
LTR210_ProcessData() returns error LTR210_ERR_PLL_NOT_LOCKED, as this fact indicates
module failure.

All values of flags are listed in the description of the type e_LTR210_STATUS_FLAGS.

3.7 Module operation control via periodic status (live signal)

As in the frame-by-frame acquisition mode in absence of synchronization events the module
records only to the internal circular buffer and does not transfer any data to the crate/PC, then

17

in such case there is no information upon which the module failure may be inferred. If additional
check whether the module correctly executes record to internal buffer and synchronization
conditions check is required, then periodic sending of the module word status may be enabled.
This calls for setting of the flag LTR210_CFG_FLAGS_KEEPALIVE_EN in the field Flags of the
configuration structure upon the module configuration prior to invocation of LTR210_SetADC().
In this case after record enable by invocation of LTR210_Start() the module shall transfer its
status word once per 500 ms until record inhibit by invocation of LTR210_Stop(). Whereby
status words are transferred only when the frame transmission is not running (i.e. they may be
transferred only between frames, but not inside of the frame) thereby the word size in the
frame is unchanged and acquisition procedure does not vary in case the periodic transfer of the
module status is on/off.

Periodic status transfer may be used as the module live signal - absence of the module status
words during the specified interval indicates the module failure. It should be kept in mind that
this interval must exceed 500 ms (for example, few seconds) as it should consider any probable
delay both of data transfer via interface between the crate and PC, and of possible software
delay in data acquisition in the upper level server and program.

In the receipt of the module status, LTR210_WaitEvent() shall return the event
LTR210_RECV_EVENT_KEEPALIVE. Besides, an additional information from received status shall
be saved in the parameter status (if the null index was not transferred). It is similar to
information in the frame status, except for the absence of flags that refer directly to the
received frame. Thus the following information is available in the periodic status:

• Which channels enable record

• PLL module capture state. Besides in absence of capture attribute PLL LTR210_WaitEvent()
returns error LTR210_ERR_PLL_NOT_LOCKED, as this fact indicates module failure.

Live signal (status) check during the specified interval may be executed by one of the
following methods:

1. In the receipt cycle LTR210_WaitEvent() may be called with timeout equal to the interval
during which it is deemed that the status must be acquired. If on expiration of timeout no
event has occurred (LTR210_WaitEvent() returned the event
LTR210_RECV_EVENT_TIMEOUT), then it indicates the module failure.

2. LTR210_WaitEvent() may be called with less timeout and, in case of no event, it should be
checked how much time has passed since receipt of the last module data, by invocation of
LTR210_GetLastWordInterval(). If this interval exceeds threshold, then the module may be
considered defective. This method, particularly, allows interactive stop of data acquisition
as it does not require expectation for longer timeouts in LTR210_WaitEvent().

3.8 Continuous data acquisition mode

For continuous data acquisition configuration SyncMode =
LTR210_SYNC_MODE_CONTINUOUS shall be set. In this mode frame parameters (FrameSize and
HistSize) have no value, and GroupMode should be equal to
LTR210_GROUP_MODE_INDIVIDUAL (default value).

18

Besides in the continuous acquisition mode there is ADC acquistion frequency limit. This limit
relates to the data transfer rate via interface between the module and the crate. As for LTR-U-1
inequation Nch *facq ≤ 200 KHz, and Nch * facq ≤ 500 KHz for the rest crates, shall be executed.
These conditions should be checked in the invocation of LTR210_SetADC().

In the continuous data acquisition the live status transfer is not applied, i.e. the flag
LTR210_CFG_FLAGS_KEEPALIVE_EN has no value.

In the continuous data acquisition by invocation of LTR210_Start() the data acquisition from
ADC and transfer to the interface are initiated. Data is received similarly to other LTR modules
from ADC via LTR210_Recv() and LTR210_ProcessData(). The module does not send any status
words as the reading thread is not split into frames. Hence, as a result of frame processing,
LTR210_ProcessData() always returns LTR210_FRAME_RESULT_PENDING and this data do not
contain any additional information, so as a rule the null index may be transferred as
frame_status.

3.9 The peculiarities of data calibration by the module

It should be noted that unlike most of the rest LTR modules the data calibration is performed
by hardware inside the module but not by software. Thus, there are no instructions on
calibration in LTR210_ProcessData(). The library itself performs reading of calibration
coefficients from module Flash-memory and storing them in array CbrCoef fields in structure
containing the information about the module and recording of these coefficients in FPGA.

FPGA performs calibration immediately by the formula Y = (X + Offset) * Gain, where X - ADC
readings, Y — calibrated data, Offset — scale offset, and Gain — scale factor. In addition, before
calibration, the ADC input value is expanded by 1 bit. Already calibrated 15-bit readings are
transferred to the crate. In addition, the code LTR210_ADC_SCALE_CODE_MAX corresponds to
voltage equal to maximum voltage for the given range.

3.10 AFC correction

Adjustment of the amplitude-frequency characteristic (AFC) of the module is enabled in the
library.

For all ranges the AFC slope may be adjusted via the second stage feedback filter in
accordance with the procedure described in the article
Delicate AFC response slope correction method with the use of ordinary digital filter. In Flash-
memory of the module the measured amplitude ratio of the given frequency signal at maximum
ADC acquisition frequency (10 MHz) to amplitude of the least frequency is saved for each
channel as well as the signal frequency (Hz).

Besides, in ranges ±10 V and ±5 V the AFC knee in the low-frequency area may be adjusted
via the infinite-impulse response filter in compliance with the procedure described in the article
Ordinary infinite-impulse response filter for AFC knee adjustment in the low-frequency area of
the bandwidth. Flash-memory contains R2 and C (R1 is always equal to 1) parameters of the
equivalent filter circuit for AFC adjustment at maximum discretion frequency (10 MHz). The
infinite-impulse response filter is applied prior to the feedback filter (whereby the feedback
filter factor recorded in the Flash-memory considers AFC changes reflected by the infinite-
impulse response filter).

http://www.lcard.ru/download/simple_fir_filter.pdf
http://www.lcard.ru/download/simple_iir_filter.pdf
http://www.lcard.ru/download/simple_iir_filter.pdf

19

All AFC adjustment parameters are read out from the module Flash-memory upon its
opening along with calibration factors and saved in corresponding fields of the structure with
information about the module.

When setting module via LTR210_SetADC() the library calculates filter factors for specified
discretion frequency, if they were calculated in the previous start, using abovementioned
parameters. In the processing of received data to the function LTR210_ProcessData() the flag
LTR210_PROC_FLAG_AFC_COR, which indicates that calculated filter(s) shall be applied for the
module AFC adjustment, may be set.

3.11 Null offset measuring and adjustment

LTR210 enables measurement of the own null. It allows, if necessary, for taking into account
null offset which may be related either with its temporary escape, or with change in ambient
conditions. This calls for own null measurement immediately prior to record initiation and upon
further acquisition get adjusted measurements by deduction of measured null from received
readings. Null offset depends on applied ranges and a channel, thus null should be measured for
the same configurations, as the further measurements.

Though the user may program this algorithm by himself/herself, if necessary, the library
provides functions to facilitate this operation. The function LTR210_MeasAdcZeroOffset()
measures its own null for ranges specified in the module configuration. It should be called after
ADC setting prior to enabling data recording. Calculated values are saved in the field
AdcZeroOffset of the module status structure.

Hereafter, in the data processing, LTR210_ProcessData() may be used to transfer the flag
LTR210_PROC_FLAG_ZERO_OFFS_COR, whereby LTR210_ProcessData() shall deduct saved
measured values of null offset from processed readings.

It should be noted that upon and after null offset measurement via
LTR210_MeasAdcZeroOffset() until data processing, channel ranges shall not change. In case of
change in ranges, the null offset must be measured again.

3.12 Invocation of library functions from different treads

Functions of the library ltr210api, and libraries for operation with other LTR modules, are not
thread-safe. That means that the user must ensure that function invocation for operation with
the same module is sequential (certainly, parallel operation with different modules from
different threads is possible).

However, to ease application, there are exceptions to the rules. Following data acquisition in
a separate thread via LTR210_WaitEvent(), LTR210_Recv() and LTR210_ProcessData() the
functions may be called from another thread:

• LTR210_FrameStart() for invocation of software synchronization event

• LTR210_SetADC() for immediate update of some configurations

It enables invocation of LTR210_FrameStart() and LTR210_SetADC() from the user interface
thread even in case of acquisition in a separate thread.

20

Chapter 4

Constants, types of data and library functions

4.1 Constants and enumerations.

4.1.1 Constants and macros.

Constant Value Description

LTR210_NAME_SIZE 8
Size of a string with the module
name in the structure
TINFO_LTR210

LTR210_SERIAL_SIZE 16
Size of a string with the serial
module number in the structure
TINFO_LTR210

LTR210_CHANNEL_CNT 2
Number of ADC channels in one
module

LTR210_RANGE_CNT 5
Number of ADC measurement
ranges

LTR210_AFC_IIR_COR_RANGE_CNT 2

Number of ranges for which
additional AFC adjustment shall
be executed via IIR filter

LTR210_ADC_SCALE_CODE_MAX 13000

Code of received ADC reading
corresponding to maximum
voltage with given range

LTR210_ADC_FREQ_DIV_MAX 10
Maximum value of ADC
frequency divider

LTR210_ADC_DCM_CNT_MAX 256
Maximum reduction factor for
data received from ADC

LTR210_ADC_FREQ_HZ 10000000
Frequency (Hz) for which ADC
reading frequency is set

LTR210_FRAME_FREQ_HZ 1000000

Frequency (Hz) for which frame
sequence frequency is set in the
mode
LTR210_SYNC_MODE_PERIODIC

21

LTR210_INTERNAL_BUFFER_SIZE (16777216)
Size of internal circular module
buffer in ADC readings

LTR210_FRAME_SIZE_MAX (16777216 - 512)
Maximum frame size which may
be set in one-channel mode

4.1.2 Error codes specific to LTR210.

Type: e_LTR210_ERROR_CODES
Description: Error codes defined and used in ltr210api only. Other error codes used
by different modules are defined in ltrapi.h

Constant Value Description

LTR210_ERR_INVALID_SYNC_MODE -10500
Wrong code of the frame
acquisition condition is preset

LTR210_ERR_INVALID_GROUP_MODE -10501
Wrong code of the group module
operating mode is preset

LTR210_ERR_INVALID_ADC_FREQ_DIV -10502
Wrong value of ADC frequency
divider is preset

LTR210_ERR_INVALID_CH_RANGE -10503
Wrong code of ADC channel range
is preset

LTR210_ERR_INVALID_CH_MODE -10504
Wrong channel measuring mode is
preset

LTR210_ERR_SYNC_LEVEL_EXCEED_
RANGE

-10505

Preset level of analogue
synchronization is beyond the
preset range

LTR210_ERR_NO_ENABLED_CHANNEL -10506 No ADC channel is enabled

LTR210_ERR_PLL_NOT_LOCKED -10507 PLL capture error

LTR210_ERR_INVALID_RECV_DATA_CNTR -10508
Wrong counter value in received
data

LTR210_ERR_RECV_UNEXPECTED_CMD -10509
Acceptance of unsupported
 command in data thread

LTR210_ERR_FLASH_INFO_SIGN -10510
Wrong attribute of the module
information in the Flash-memory

LTR210_ERR_FLASH_INFO_SIZE -10511
Wrong size of the module
information read out of the Flash-
memory

LTR210_ERR_FLASH_INFO_UNSUP_
FORMAT

-10512
Unsupported format of the module
information from the Flash-memory

22

LTR210_ERR_FLASH_INFO_CRC -10513
Failed to check CRC information
about the module from the Flash-
memory failed

LTR210_ERR_FLASH_INFO_VERIFY -10514
Failed to check module information
record from the Flash-memory

LTR210_ERR_CHANGE_PAR_ON_THE_FLY -10515
Part of changed parameters
can not be modified immediately

LTR210_ERR_INVALID_ADC_DCM_CNT -10516
Wrong ADC data reduction factor is
preset

LTR210_ERR_MODE_UNSUP_ADC_FREQ -10517
Preset mode does not support
preset frequency
ADC

LTR210_ERR_INVALID_FRAME_SIZE -10518 Wrong frame size is preset

LTR210_ERR_INVALID_HIST_SIZE -10519 Wrong pre-history size is preset

LTR210_ERR_INVALID_INTF_TRANSF_
RATE

-10520
Wrong data-to-interface transfer
rate is preset

LTR210_ERR_INVALID_DIG_BIT_MODE -10521
Wrong operating mode of
additional bit is preset

LTR210_ERR_SYNC_LEVEL_LOW_EXCEED_
HIGH -10522

Lower threshold of analogue
synchronization exceeds the upper
one

LTR210_ERR_KEEPALIVE_TOUT_
EXCEEDED -10523

No status from module has been
received during the given time
interval

LTR210_ERR_WAIT_FRAME_TIMEOUT -10524
Failed to expect frame receipt
during the given period

LTR210_ERR_FRAME_STATUS -10525
Status word in received frame
indicates the data error

4.1.3 ADC channel ranges

Type: e_LTR210_ADC_RANGE
Description: ADC channel range
Constant Value Description
LTR210_ADC_RANGE_10 0 Range ±10 V
LTR210_ADC_RANGE_5 1 Range ±5 V
LTR210_ADC_RANGE_2 2 Range ±2 V
LTR210_ADC_RANGE_1 3 Range ±1 V
LTR210_ADC_RANGE_0_5 4 Range ±0.5 V

23

4.1.4 ADC channel measuring mode

Type: e_LTR210_CH_MODE
Description: ADC channel measuring mode
Constant Value Description

LTR210_CH_MODE_ACDC 0
Measurement of variable and constant component
(open input)

LTR210_CH_MODE_AC 1 Constant component split (closed input)

LTR210_CH_MODE_ZERO 2 Own zero measurement mode

4.1.5 Operating mode and synchronization events.

Type: e_LTR210_SYNC_MODE
Description: Determined module operating mode and frame acquisition start condition
(synchronization events)
Constant Value Description

LTR210_SYNC_MODE_INTERNAL 0
Frame acquisition mode on the
software command issued by
invocation of LTR210_FrameStart()

LTR210_SYNC_MODE_CH1_RISE 1

Frame acquisition mode on the rising
edge of signal relative to
synchronization level in the initial
analogue channel

LTR210_SYNC_MODE_CH1_FALL 2

Frame acquisition mode on the falling
edge of signal relative to
synchronization level in the initial
analogue channel

LTR210_SYNC_MODE_CH2_RISE 3

Frame acquisition mode on the rising
edge of signal relative to
synchronization level in the secondary
analogue channel

LTR210_SYNC_MODE_CH2_FALL 4

Frame acquisition mode on the falling
edge of signal relative to
synchronization level in the secondary
analogue channel

LTR210_SYNC_MODE_SYNC_IN_RISE 5
Frame acquisition mode on the rising
edge of signal at the SYNC inlet (not
from another module!)

LTR210_SYNC_MODE_SYNC_IN_FALL 6
Frame acquisition mode on the falling
edge of signal at the SYNC inlet (not
from another module!)

24

LTR210_SYNC_MODE_PERIODIC 7 Periodic frame acquisition mode with
preset frame sequence frequency

LTR210_SYNC_MODE_CONTINUOUS 8 Continuous data acquisition mode

4.1.6 Module operation mode in a group

Type: e_LTR210_GROUP_MODE
Description: Determines the module operating mode within a group. Applied in the
arrangement of LTR210 modules thread that record frames by one event.

Constant Value Description

LTR210_GROUP_MODE_INDIVIDUAL 0 Module operates apart from other items

LTR210_GROUP_MODE_MASTER 1

Master mode - in case of preset
synchronization event the module
generates a signal to the SYNC inlet. This
signal may be used by slave modules to
initiate conversion simultaneously with
the master module. May be used in
association with any SyncMode value,
except for
LTR210_SYNC_MODE_CONTINUOUS

LTR210_GROUP_MODE_SLAVE 2

Slave module mode - the module
initiates frame acquisition from a signal
at the SYNC inlet which must generate
another LTR210 set for a master mode.
SyncMode value is not taken into
account

4.1.7 Asynchronous event codes

Type: e_LTR210_RECV_EVENT
Description: Codes that determine which asynchronous data was accepted from the
module and which event it corresponds to. Returned by function LTR210_WaitEvent() in
parameter event
Constant Value Description

LTR210_RECV_EVENT_TIMEOUT 0
No event is received from the module
within the given period of time

LTR210_RECV_EVENT_KEEPALIVE 1
Correct status signal is received from the
module (live signal)

LTR210_RECV_EVENT_SOF 2 The beginning of recorded frame is
received

25

4.1.8 Codes defining correctness of accepted frame

Type: e_LTR210_FRAME_RESULT
Description:
Constant Value Description

LTR210_FRAME_RESULT_OK 0
The frame is received without failure.
Frame data is valid

LTR210_FRAME_RESULT_PENDING 1 No frame end attribute in processed data.

LTR210_FRAME_RESULT_ERROR 2
Accepted frame is defected. Frame data is
invalid. The error reason may be
recognized by status flags.

4.1.9 Status flags

Type: e_LTR210_STATUS_FLAGS
Description: Flags indicating both current state of the LTR210 module, and
information about the last accepted frame. Information from periodic words of the
module status and the frame status words is presented as the combination of these
flags.
Constant Value Description

LTR210_STATUS_FLAG_PLL_LOCK 0x0001

PLL capture attribute upon status
transfer. If zero, then the module is
inoperable.

LTR210_STATUS_FLAG_PLL_LOCK_HOLD 0x0002

Attribute of the fact that PLL
capture was maintained since the
previous status transfer. Shall be set
in any status except for the initial
one

LTR210_STATUS_FLAG_OVERLAP 0x0004

Attribute of the fact that recording
process is of advantage of the
reading process. A part of the frame
data may be invalid

LTR210_STATUS_FLAG_SYNC_SKIP 0x0008

Attribute of the fact that during the
frame record at least one missed
synchronization event occurred.
Does not affect the frame validity.

26

LTR210_STATUS_FLAG_INVALID_HIST 0x0010

Attribute of the fact that pre-history
of accepted frame is invalid (the
event occurred less than in HistSize
of readings after the record is
enabled)

LTR210_STATUS_FLAG_CH1_EN 0x0040
Attribute of the fact that record is
enabled in the initial channel

LTR210_STATUS_FLAG_CH2_EN 0x0080
Attribute of the fact that record is
enabled in the secondary channel

4.1.10 Additional setting flags

Type: e_LTR210_CFG_FLAGS
Description: Set of flags regulating module configuration during its set-up.
Combination of these flags may be written in the field Flags of the structure
TLTR210_CONFIG
Constant Value Description

LTR210_CFG_FLAGS_KEEPALIVE_EN 0x001
Enable periodic transfer of the
module status upon initiated
acquisition

LTR210_CFG_FLAGS_WRITE_AUTO_SUSP 0x002

Enable automatic record delay
mode while the frame is being
transferred to the crate via
interface. This mode allows for set-
up of maximum frame size apart
from ADC acquisition frequency

LTR210_CFG_FLAGS_TEST_CNTR_MODE 0x100
Test run mode where the counter is
transferred instead of data

27

4.1.11 Data processing flags.

Type: e_LTR210_PROC_FLAGS

Description: Flags regulating function operation LTR210_ProcessData()

Constant Value Description

LTR210_PROC_FLAG_VOLT 0x0001

Flag to convert ADC codes in Volts. If
this flag is not specified the ADC codes
will be returned. In addition, the code
LTR210_ADC_SCALE_CODE_MAX
corresponds to maximum voltage for
the specified range.

LTR210_PROC_FLAG_AFC_COR 0x0002

Indicates the necessity of AFC
adjustment based on module factors
recorded to the Flash-memory

LTR210_PROC_FLAG_ZERO_OFFS_COR 0x0004

Indicates the necessity of additional
null adjustment using values
From State.AdcZeroOffset, which may
be measured by function
LTR210_MeasAdcZeroOffset()

LTR210_PROC_FLAG_NONCONT_DATA 0x0100

Upon default
LTR210_ProcessData() assumes that
all received data is transmitted to be
processed and checks the counter
continuity not only within the
accepted data block but among the
calls. This flag shall be specified for the
counter checking within the processed
block only if not all data are processed
or the same data are reprocessed.

28

4.1.12 Data output to interface rate

Type: e_LTR210_INTF_TRANSF_RATE
Description: A set of constants which preset the rate of data reading from the LTR210
module buffer and data output to the crate interface.
Constant Value Description
LTR210_INTF_TRANSF_RATE_500K 0 500 KWords/s
LTR210_INTF_TRANSF_RATE_200K 1 200 KWords/s
LTR210_INTF_TRANSF_RATE_100K 2 100 KWords/s
LTR210_INTF_TRANSF_RATE_50K 3 50 KWords/s
LTR210_INTF_TRANSF_RATE_25K 4 25 KWords/s
LTR210_INTF_TRANSF_RATE_10K 5 10 KWords/s

4.1.13 Additional bit operation mode in the input thread.

Type: e_LTR210_DIG_BIT_MODE

Description: Determines which value shall be transferred as additional bit in readings
accepted from the module.

Constant Value Description

LTR210_DIG_BIT_MODE_ZERO 0 Bit value is always null

LTR210_DIG_BIT_MODE_SYNC_IN 1 Bit reflects state of the digital input
of the SYNC module

LTR210_DIG_BIT_MODE_CH1_LVL 2

Bit is equal to "1" if signal level for
the 1st channel of ADC exceeded
upper level of synchronization and
has not dropped
beyond the lower level

29

LTR210_DIG_BIT_MODE_CH2_LVL 3

Bit is equal to "1" if signal level for
the 2nd channel of ADC exceeded
upper level of synchronization and
has not dropped
beyond the lower level

LTR210_DIG_BIT_MODE_INTERNAL_SYNC 4

Bit is equal to "1" for one reading
upon response of software or
periodic
synchronization

4.2 Data types.

4.2.1 Calibration coefficients

Type: TLTR210_CBR_COEF
Description: The structure storing the calibration coefficients for one channel and
range.
Field Type Field description
Offset float 15-bit offset code
Scale float Scale coefficient

4.2.2 Parameters of infinite-impulse response filter.

Type: TLTR210_AFC_IIR_COEF
Description: Parameters for calculation of infinite-impulse response filter factors used for
adjustment of AFC ranges 10V and 5V.
Field Type Field description
R double Equivalent filter circuit resistance
C double Equivalent filter circuit capacity

30

4.2.3 Module information.

Type: TINFO_LTR210
Description: The structure containing the information about module circuit firmware
versions and information from module Flash-memory (serial number, calibration
coefficients).
Apart from VerFPGA all fields are valid after invocation of
LTR210_Open(). The field VerFPGA, if FPGA is not downloaded upon connection with
the module, shall be valid only after successful invocation of LTR210_LoadFPGA().

Field Type Field description

Name
CHAR [LTR210_NAME_
SIZE]

Module name (ASCII-string ending with zero)

Serial
CHAR [LTR210_SERIAL_
SIZE]

Serial number of the module (ASCII-string ending
with zero)

VerFPGA WORD
Firmware version of the module FPGA (valid only
after downloading)

VerPLD BYTE PLD firmware version

CbrCoef
TLTR210_CBR_COEF
[LTR210_CHANNEL_CNT]
[8]

Factory calibration factors (initial
LTR210_RANGE_CNT are valid per channel, the
rest are reserved)

AfcCoefFreq double
Frequency (Hz) that corresponds to AFC
adjustment factors

AfcCoef
double [LTR210_
CHANNEL_CNT] [8]

Module AFC fall-off factor at the AfcCoefFreq
frequency. Represents ratio of measured sine-
wave signal amplitude at specified frequency to
the amplitude of actual signal. Factors are
downloaded from the module Flash-memory
upon circuit activation. May be used for AFC
adjustment, if any. Initial LTR210_RANGE_CNT of
factors are valid per channel, the rest are
reserved.

AfcIirParam
TLTR210_AFC_IIR_COEF
[LTR210_CHANNEL_CNT]
[8]

Parameters for calculation of IIR filter factors
used for adjustment of AFC ranges 10V and 5V.
These parameters are stored in the module
Flash-memory. Initial
LTR210_AFC_IIR_COR_RANGE_CNT of factors are
valid per channel, the rest are reserved.

Reserved DWORD [32] Backup fields

31

4.2.4 ADC channel configurations.

Type: TLTR210_CHANNEL_CONFIG
Description: The structure containing ADC one channel configurations.
Field Type Field description
Enabled BOOLEAN Acquisition allowed by this channel flag

Range BYTE
Preset range - constant form
e_LTR210_ADC_RANGE

Mode BYTE Measurement mode - constant from
e_LTR210_CH_MODE

DigBitMode BYTE
Additional bit operation mode in the input data thread
of the channel. Constant from
e_LTR210_DIG_BIT_MODE

Reserved BYTE [4] Backup fields (shall not be changed by the user)

SyncLevelL double

Lower hysteresis threshold in the analogue
synchronization (V). Falling edge is a signal reduction
beyond the SyncLevelL, if before the signal exceeded
SyncLevelH. Rising edge is an excess of SyncLevelH, if
before the signal was beyond SyncLevelL. Must be within
preset range.

SyncLevelH double
Upper hysteresis threshold in the analogue
synchronization (V). Must be within preset range, not
less than SyncLevelL.

Reserved2 DWORD [10] Backup fields (shall not be changed by the user)

4.2.5 Module configurations.

Type: TLTR210_CONFIG
Description: The structure contains all module configurations which shall be filled by the
user prior to invocation of LTR210_SetADC().
Field Type Field description

Ch
TLTR210_CHANNEL_CONFIG
[LTR210_CHANNEL_CNT]

ADC channel configurations

FrameSize DWORD
Point size per channel in the frame in the
frame-by-frame acquisition mode

HistSize DWORD
Pre-history size (number of points per
channel in the frame, measured prior to
occurrence of synchronization event)

32

SyncMode BYTE
Frame acquisition condition (synchronization
event) One of values of
e_LTR210_SYNC_MODE

GroupMode BYTE
Operating mode within a group of modules.
One of values of e_LTR210_GROUP_MODE

AdcFreqDiv WORD
ADC frequency divider value minus
1. May vary from 0 to
LTR210_ADC_FREQ_DIV_MAX-1

AdcDcmCnt DWORD

Value of ADC data reduction factor minus 1.
May vary from 0 to
LTR210_ADC_DCM_CNT_MAX-1.

FrameFreqDiv DWORD

Frame acquisition start frequency divider for
SyncMode =
LTR210_SYNC_MODE_PERIODIC. Frame
frequency is equal to Hz

Flags DWORD
Flags of configuration (combination of
e_LTR210_CFG_FLAGS)

IntfTransfRate BYTE

Data-to-interface output rate (one of values
from e_LTR210_INTF_TRANSF_RATE).
Maximum rate (500 KWords/s) is set by
default. If preset rate exceeds maximum
interface rate for crate whereto the module
is installed, then maximum rate supported
by this crate shall be set

Reserved DWORD [39]
Backup fields (shall not be changed by the
user)

4.2.6 Module state parameters.

Type: TLTR210_STATE
Description: The structure containing the module parameters which shall be used
read-only by the user because they are changed inside of ltr210api functions only.

Field Type Field description
Run BOOLEAN Data acquisition start flag

RecvFrameSize DWORD
Number of words in accepted frame including
status (set after invocation of
LTR210_SetADC())

33

AdcFreq double
Calculated ADC acquisition frequency,
Hz (set after invocation of
LTR210_SetADC())

FrameFreq double

Calculated frame sequence frequency for
synchronization mode
LTR210_SYNC_MODE_PERIODIC (set after
invocation of LTR210_SetADC())

AdcZeroOffset
double [LTR210_
CHANNEL_CNT]

Measured ADC null offset values in codes
(simplified to LTR210_ADC_SCALE_CODE_MAX)
for current configurations. Set upon invocation
of LTR210_MeasAdcZeroOffset(). May be used
for additional adjustment of ADC null offset.

Reserved DWORD [4] Backup fields

4.2.7 Module handle.

Type: TLTR210
Description: The structure contains full information about module configurations and
current state of module connection. Applied by all functions for module operation.

Field Type Field description
Size INT Structure size. Filled in LTR210_Init().

Channel TLTR
The structure containing the state of client connection
to ltrd service. Is not used by the user directly.

Internal PVOID
Opaque structure index with internal parameters used
by library only and unaccessible for the user.

Cfg TLTR210_CONFIG
Module configurations. Filled by the user before
invocation of LTR210_SetADC().

State TLTR210_STATE

Module state and calculated parameters. Fields are
changed by the library functions. Can be used read-only
by the user program.

ModuleInfo TINFO_LTR210 Module information

34

4.2.8 Additional information about accepted reading.

Type: TLTR210_DATA_INFO
Description: The structure contains additional information about accepted and
processed data word extracted from data fields of the accepted word.

Field Type Field description

DigBitState BYTE

The least significant bit corresponds to the additional
bit value transferred along with the data thread. That
means that this bit is set by one of constants from
e_LTR210_DIG_BIT_MODE in the field DigBitMode of
set-up per channel at the configuration stage.
Other bits may be used in the future, thus the
DigBitState \& 1 value shall be checked in the analysis.

Ch BYTE
Number of channel which the accepted word
corresponds to (0 - initial, 1 - secondary)

Range BYTE Channel range preset during measuring of this reading

Reserved BYTE Reserved field (always equal to 0)

4.2.9 Information about the processed frame status

Type: TLTR210_FRAME_STATUS
Description: This structure contains fields that inform of status of processed frame. It
should be checked to ensure that accepted frame data is valid and no error has
occurred upon its recording. The field Result may be used for this purpose, and fields
Flags provide additional information which, particularly, enables identification of error
cause.
Field Type Field description

Result BYTE

Code of the frame processing result (one of values
e_LTR210_FRAME_RESULT). Allows for determination
whether the frame end is found and whether the frame
data is valid

Reserved BYTE Reserved field (always equal to 0)

Flags WORD

Additional flags from e_LTR210_STATUS_FLAGS,
presenting information about status of the module and
accepted frame. Several flags combined via logical "OR"
can be transmitted.

35

4.2.10 Type of function for FPGA downloading process indication

Type: TLTR210_LOAD_PROGR_CB
Definition: typedef void(APIENTRY * TLTR210_LOAD_PROGR_CB) (void
*cb_data, TLTR210 *hnd, DWORD done_size, DWORD full_size)
Description: Type for callback-function called upon downloading of the module FPGA
firmware which may be used for indication of the process sequence. A pointer to the
function of given type may be transmitted to LTR210_LoadFPGA().
Parameters:
cb_data — a pointer transmitted to LTR210_LoadFPGA() as a parameter cb_data
hnd — a pointer to the module handle for which FPGA firmware is downloaded
done_size — number of successfully written bites
full_size — full size of firmware file in bites

4.3 Functions

4.3.1 The functions of initialization and dealing with connection to the
module.

4.3.1.1 Module handle initialization

Format: INT LTR210_Init (TLTR210 *hnd)
Description:

The function initializes fields of the module handle structure with values set by
default. This function must be called for every structure by TLTR210 prior to
invocation of other functions.
Parameters:
hnd — Module handle
Returned value: Error code

4.3.1.2 Opening connection to module.

Format: INT LTR210_Open (TLTR210 *hnd, DWORD ltrd_addr, WORD ltrd_port, const
CHAR *csn, WORD slot)
Description:

The function makes connection to the module in accordance with parameters
transmitted, check for module availability and reads the information about it. Shall be
called prior to manipulate with the module. After completion of operation it is
necessary to close connection using LTR210_Close().
Parameters:
hnd — Module handle
ltrd_addr — IP-address of the computer where ltrd service in 32-bit format has been

started (described in section "IP-addresses setting format" of instruction for
library ltrapi). If the ltrd service is started at the same computer as the program

http://www.lcard.ru/download/ltrapi_en.pdf
http://www.lcard.ru/download/ltrapi_en.pdf

36

calling this function the LTRD_ADDR_DEFAULT can be transmitted as the
address.

ltrd_port — TCP-port for connection to ltrd service. LTRD_PORT_DEFAULT is used by
default.

csn — serial number of the crate where the targeted module is located. Presenting
ASCII-string ending with zero. Empty string or zero index can be transmitted to
connect to the first found crate.

slot — Number of crate slot where the targeted module is located. Value from
LTR_CC_CHNUM_MODULE1 to LTR_CC_CHNUM_MODULE16.

Returned value: Error code

4.3.1.3 Closing connection to module.

Format: INT LTR210_Close (TLTR210 *hnd)
Description:

The function closes previously opened connection using LTR210_Open() Shall be
called after manipulating with the module completion. With any returned value after
calling this function the relevant handle can not be used without opening a new
connection.
Parameters:
hnd — Module handle
Returned value: Error code

4.3.1.4 Checking for opening connection to module.

Format: INT LTR210_IsOpened (TLTR210 *hnd)
Description:

The function checks whether the connection to the module is currently opened. If
the connection is opened the function returns LTR_OK, if it is closed — error code
LTR_ERROR_CHANNEL_CLOSED.
Parameters:
hnd — Module handle
Returned value:
Error code (LTR_OK, if the connection is established).

4.3.1.5 Checking for module FPGA firmware downloading.

Format: INT LTR210_FPGAIsLoaded (TLTR210 *hnd)
Description:

The function checks whether the module FPGA firmware is currently downloaded.
If the firmware is downloaded, the function returns LTR_OK, otherwise —
LTR_ERROR_FPGA_IS_NOT_LOADED. If FPGA is not downloaded, then it should be
done via LTR210_LoadFPGA().
Parameters:
hnd — Module handle

37

Returned value:
Error code (LTR_OK, if the firmware is downloaded).

4.3.1.6 Downloading of the module FPGA firmware.

Format: INT LTR210_LoadFPGA (TLTR210 *hnd, const char *filename,
TLTR210_LOAD_PROGR_CB progr_cb, void *cb_data)
Description:

The function downloads the module FPGA firmware out of specified file. If null
index or a blank string is used as the file name, then for OS Windows the firmware
version integrated into the library as resource is downloaded, as for OS Linux the
standard path file is used (installation path in the library assembly).

This function should be executed after opening of connection with the module
prior to further operation, if the firmware was not downloaded before. Check
whether the FPGA firmware is downloaded may be performed via
LTR210_FPGAIsLoaded().
Parameters:
hnd — Module handle.
filename — File name with the module FPGA firmware or a blank string.
progr_cb — a pointer to the function which shall be used during download and may

be used for downloading process indication. If it is not used, then the null index
may be transmitted.

cb_data — if the function progr_cb is indicated, then this index shall be transmitted
to it as the homonym parameter.

Returned value: Error code

4.3.2 Module setting change functions

4.3.2.1 Setting storing in module.

Format: INT LTR210_SetADC (TLTR210 *hnd)
Description:

The function transmits the configurations relevant to field values of module handle
Cfg field to the module. Must be called prior to the module initiation.

This function may be also called upon triggered data acquisition process to change
limited number of parameters which may be changed immediately.
Parameters:
hnd — Module handle
Returned value: Error code

4.3.2.2 Setting of specified ADC acquisition frequency.

Format: INT LTR210_FillAdcFreq (TLTR210_CONFIG *cfg, double freq, DWORD flags,
double *set_freq)
Description:

The function fills the fields AdcFreqDiv and AdcDcmCnt with values for which ADC

38

acquisition frequency shall be as nearly to the given values as possible.
It may be called prior to LTR210_SetADC() instead of manual filling of specified

fields.
Parameters:
cfg — a pointer to the structure with the module configuration
freq — ADC acquisition frequency (Hz) which should be set
flags — flags (reserved — 0 shall always be transmitted)
set_freq — in the given variable the actual frequency value corresponding to selected

parameters is stored. The null index can be transmitted if this information is no
longer needed.

Returned value: Error code

4.3.2.3 Setting of specified frame spacing frequency.

Format: INT LTR210_FillFrameFreq (TLTR210_CONFIG *cfg, double freq, double
*set_freq)
Description:

The function sets value for the field FrameFreqDiv such that the frame sequence
frequency in mode LTR210_SYNC_MODE_PERIODIC would be as nearly close to the
given value as possible.

It may be called prior to LTR210_SetADC() instead of manual filling of
FrameFreqDiv.
Parameters:
cfg — a pointer to the structure with the module configuration
freq — frame sequence frequency (Hz) which should be set
set_freq — in this variable the actual frequency value corresponding to selected
parameters is stored. The null index can be transmitted if this information is no longer
needed.
Returned value: Error code

4.3.3 Data acquisition control functions

4.3.3.1 Start of data acquisition.

Format: INT LTR210_Start (TLTR210 *hnd)
Description:

ADC data record is initiated by the module when this function is called. When
continuous data acquisition (SyncMode = LTR210_SYNC_MODE_CONTINUOUS) is
triggered, this function initiates data acquisition from ADC and data output to the
crate.

In the frame-by-frame acquisition upon invocation of the function, the module
switches to the mode of recording into the internal buffer and waiting for
synchronization events to provide frame output to the crate. Also upon and after the
function is called, the module starts periodic status transmission, if enabled.

At least one ADC channel should be enabled and the module should be configured
via LTR210_SetADC().

39

Parameters:
hnd — Module handle
Returned value: Error code

4.3.3.2 Stopping of data acquisition.

Format: INT LTR210_Stop (TLTR210 *hnd)
Description:

Upon invocation of this function the module stops data record, synchronization
event expectation and periodic statuses output.

In addition, all transmitted but not read data from the module are read and
thrown.
Parameters:
hnd — Module handle
Returned value: Error code

4.3.3.3 Program initiation of frame acquisition.

Format: INT LTR210_FrameStart (TLTR210 *hnd)
Description:

The function sends command to the module to initiate program synchronization
event. Following the event the module starts frame acquisition (and generates pulse
in the master mode at the SYNC outlet for slave modules).
 May be used exclusively in the mode LTR210_SYNC_MODE_INTERNAL.

In the invocation of this function data record from ADC shall be already enabled via
LTR210_Start().
Parameters:
hnd — Module handle
Returned value: Error code

4.3.3.4 Waiting for asynchronous event from the module.

Format: INT LTR210_WaitEvent (TLTR210 *hnd, DWORD *event, DWORD*status,
DWORD tout)
Description:

The function tries to accept a word from the module which corresponds to one of
probable asynchronous events during specified timeout. The function returns control
upon receipt of the first word corresponding to any event.

If no event occurred during preset timeout, then it is deemed to be a normal
termination (function returns LTR_OK), but LTR210_RECV_EVENT_TIMEOUT returns
as the event code.

To provide continuous data acquisition the function always returns the event
LTR210_RECV_EVENT_SOF and does not accept any data.
Parameters:
hnd — Module handle.
event — in this variable the occurred event code is returned

40

(LTR210_RECV_EVENT_TIMEOUT, if no event occurred during specified time interval).
status — unless NULL is indicated, then on an event LTR210_RECV_EVENT_KEEPALIVE
in this variable the information about the module status is saved in the form of
combination of flags e_LTR210_STATUS_FLAGS. On other events this parameter is not
subject to change.
tout — event timeout, in milliseconds.
Returned value: Error code

4.3.3.5 Data receiving from the module.

Format: INT LTR210_Recv (TLTR210 *hnd, DWORD *data, DWORD *tmark,
DWORD size, DWORD timeout)
Description:

The function receives the requested number of words from the module. The
returned words are in the specific format containing the service information. To
process the received words and to receive ADC values the function
LTR210_ProcessData() is used.

In the frame-by-frame acquisition mode the function is used for frame receipt after
identification of the frame start via LTR210_WaitEvent(), and in the continuous
acquisition it may be called without additional call, as for the rest LTR modules.

The function returns control whether after receipt of requested number of words,
or on expiration of timeout, and upon detection of the frame stop, if frame-by-frame
acquisition mode is used.
Parameters:
hnd — Module handle.
data — Array where the received words will be saved. It must have size of "size" of
32-bit words.
tmark — index to the array with size of "size" of 32-bit words, where values of
synchro-labels will be saved, that correspond to the received data. The label
generating is configurated for the crate or for special module individually. The
synchro-labels are described in details in section "Synchro-labels" of the instruction
for the library ltrapi. If the synchro-tags are not used the null index can be transmitted
as the parameter.
size — requested quantity of 32-bit words per receipt. In the frame-by-frame mode
the frame size may be used from the field RecvFrameSize of the module handle.
timeout — Timeout for operation execution in milliseconds. If the requested number
of words is not received during the pre-set time, the function still will return control,
having returned the actual number of the received words as a result.
Returned value:
Negative value (less than zero) corresponds to the error code. The value greater than
or equal to zero corresponds to the actual number of the received and stored in the
array "data" words.

http://www.lcard.ru/download/ltrapi_en.pdf
http://www.lcard.ru/download/ltrapi_en.pdf

41

4.3.3.6 Processing of the words received from the module.

Format: INT LTR210_ProcessData (TLTR210 *hnd, const DWORD*src, double *dest,
INT *size, DWORD flags, TLTR210_FRAME_STATUS*frame_status,
TLTR210_DATA_INFO *data_info)

Description:
This function is used to process words received from the module via LTR210_Recv().

The function checks service fields of the received words, extracts useful information
with readings, and upon indicating of the flag LTR210_PROC_FLAG_VOLT, converts
readings into Volts. The function also analyzes the frame status word, if any, and
returns the result in parameter frame_status.

To receive additional service information a pointer to the array data_info may be
transmitted.

The function checks data integrity using the counter from the service information.
By default the function assumes, that all received data are processed and only once
by checking the counter continuity and between the function calls. If this condition is
ruled out it is necessary to transmit the flag LTR210_PROC_FLAG_NONCONT_DATA.
Parameters:
hnd — module handle.
src — a pointer to the array containing words received from the module via
LTR210_Recv() which are to be processed.
dest — index to the array where the processed data will be saved. Sequence order

corresponds to the order in the input array (i.e. if both channels are enabled,
then channel readings shall alternate).

size — accepts the array size src for processing at the inlet. Returns the number of
saved samples in the array dest at output upon successful completion.

flags — Flags from e_LTR210_PROC_FLAGS regulating function operation. Some flags
can be integrated through the logic OR.

frame_status — in this structure the state of accepted frame is saved, which is
generated based on the status word transmitted after the last word of status.
Frame data validity may be inferred by status. In absence of status word in
processed data (i.e. data corresponds only to the part of the frame, excluding its
end), then status is returned with the code LTR210_FRAME_RESULT_PENDING.

data_info — array whereto information extracted from service fields of processed
words shall be saved. In particular, state of additional service bit is saved in it. If
this information is not needed, the null index may be transmitted.

Returned value: Error code.

4.3.4 Auxiliary functions

4.3.4.1 Null offset measurement

Format: INT LTR210_MeasAdcZeroOffset (TLTR210 *hnd, DWORD flags)
Description:

The function performs acquisition of one frame in the mode of own null
measurement using range values preset in configuration and saves the result in fields
State.AdcZeroOffset. After measurement the previous ADC settings are reset.

42

Measured values may be used for adjustment of accepted data upon transmission
of the flag LTR210_PROC_FLAG_ZERO_OFFS_COR in LTR210_ProcessData(), that
allows for consideration of nul escape for specific conditions.

This function is called after module configuration immediately prior to initiation of
ADC data record LTR210_Start().

In case of change in ranges it is necessary to remeasure null offset.
Parameters:
hnd — Module handle.
flags — Flags (reserved - 0 should be transmitted)
Returned value: Error code.

4.3.4.2 Acceptance of the previous interval upon acceptance of the last word.

Format: INT LTR210_GetLastWordInterval (TLTR210 *hnd, DWORD*interval)
Description:

The function is used for acquisition of time interval passed since successful receipt
of the last data word from the module (via LTR210_WaitEvent() or LTR210_Recv()). It
may be used upon enabled periodic status sending (live signal) to check correct
module operation.

If during acquisition upon enabled sending of status this time exceeds permitted
interval (which must include allowed delays in the interface crate -> PC), then this
event may be deemed as the module failure.
Parameters:
hnd — Module handle.
interval — time in milliseconds since successful acceptance of the last word.
Returned value: Error code.

4.3.4.3 Receiving error message.

Format: LPCSTR LTR210_GetErrorString (INT err)
Description:

The function returns the string that corresponds to the transmitted error code In
CP1251 coding for OS Windows or UTF-8 coding for OS Linux. The function can
process both the errors from ltr210api and general codes of errors from ltrapi.
Parameters:
err — Error code
Returned value:
Index for the string containing the message error.

4.3.4.4 Downloading of factors to FPGA.

Format: INT LTR210_LoadCbrCoef (TLTR210 *hnd)
Description:

The function executes factor download from ModuleInfo.CbrCoef to the module
FPGA for further auto-adjustment. As in API functions the factors are automatically
downloaded from Flash-memory after downloading of FPGA, this function is

43

integrated only to provide application of factors. All it takes is filling in fields in
ModuleInfo.CbrCoef and calling the function. The function may be called only if FPGA
is downloaded.
Parameters:
hnd — Module handle.
Returned value: Error code.

	1. What this document is about
	2. Library installation and connection to the project
	3. General approach to working with the library
	3.1 General algorithm to working with the module
	3.2 Downloading of the module FPGA firmware
	3.3 Module setting
	3.4 Frame record and output concept
	3.5 Data acquisition in the frame-based acquisition mode
	3.6 Analysis of the accepted frame status
	3.7 Module operation control via periodic status (live signal)
	3.8 Continuous data acquisition mode
	3.9 The peculiarities of data calibration by the module
	3.10 AFC correction
	3.11 Null offset measuring and adjustment
	3.12 Invocation of library functions from different treads

	4. Constants, types of data and library functions
	4.1 Constants and enumerations
	4.2 Data types
	4.3 Functions
	4.3.1.1 Module handle initialization
	4.3.1.2 Opening connection to module.
	4.3.1.3 Closing connection to module.
	4.3.1.4 Checking for opening connection to module.
	4.3.1.5 Checking for module FPGA firmware downloading.
	4.3.1.6 Downloading of the module FPGA firmware.
	4.3.2.1 Setting storing in module.
	4.3.2.2 Setting of specified ADC acquisition frequency.
	4.3.2.3 Setting of specified frame spacing frequency.
	4.3.3.1 Start of data acquisition.
	4.3.3.2 Stopping of data acquisition.
	4.3.3.3 Program initiation of frame acquisition.
	4.3.3.4 Waiting for asynchronous event from the module.
	4.3.3.5 Data receiving from the module.
	4.3.3.6 Processing of the words received from the module.
	4.3.4.1 Null offset measurement
	4.3.4.2 Acceptance of the previous interval upon acceptance of the last word.
	4.3.4.3 Receiving error message.
	4.3.4.4 Downloading of factors to FPGA.

