

E14-140-M

Низкоуровневое описание

USB-модуль АЦП общего назначения, 16/32 канала 2-х канальный ЦАП (опция)

Авторы руководства:

Гарманов А.В., Емельянов А.С.

ЗАО "Л-КАРД"

117105, г. Москва, Варшавское ш., д. 5, корп. 4, стр. 2

тел.: (495) 785-95-25 факс: (495) 785-95-14

Адреса в Интернет:

http://www.lcard.ru

E-Mail:

Отдел продаж: sale@lcard.ru

Техническая поддержка: support@lcard.ru

Отдел кадров: job@lcard.ru

Общие вопросы: lcard@lcard.ru

Отдел производства: pro@lcard.ru

Представители L-Card:

Украина:	ХОЛИТ Дэйта Системс	http://www.holit.ua, (044) 241-6754
Казахстан:	АСК Импульс	<u>ask-impuls@mail.ru</u> (727) 261-21-93
Санкт-Петербург:	Автэкс-СПБ	http://www.autex.spb.ru (812) 567-7202
	Ниеншанц-Автоматика	<u>ipc@nnz.ru</u> (812) 567-72-02
Новосибирск:	Сектор-Т	http://www.sector-t.ru, (383-2) 396-592
Екатеринбург:	Аск	http://www.ask.ru
Казань:	000 Шатл	shuttle@kai.ru, (8432) 38-1600
по России и СНГ:	Авеон	aveon@aveon.ru +7(343) 381-75-75
Пенза:	НПП Технолинк	http://www.tl.ru/ru/departments/industry/
		(8412) 49-10-59

Ревизия документа: 1.1.0

Январь 2010

Модуль **E14-140**© Copyright 2005-2010, ЗАО Л-Кард. Все права защищены. *Модуль* **E14-140-М**© Copyright 2010, ЗАО Л-Кард. Все права защищены

История ревизий настоящего документа

Дата	Ревизия документа	Комментарий
06.2009	1.0.0	
01.2010	1.1.0	В описании протокола связи с ПЛИС по USART отражены
		нововведения в версии 2 ПЛИС.

Настоящий документ является низкоуровневым описанием работы Е14-140-М. Здесь приводятся сведения для программистов, желающих по тем или иным мотивам изменить встроенное программное обеспечение Е14-140-М под свою задачу.

Для обычной работы с E14-140-M с использованием штатных возможностей, поддержанных поставляемыми библиотечными функциями, информация данной главы вряд ли пригодится.

К ранним моделям E14-140 (на контроллере AVR) данное низкоуровневое описание не имеет отношения

1. Введение.

Лежащий в основе рассматриваемой архитектуры ARM-контроллер AT91SAM7S256 далее по тексту будем называть просто ARM.

Настоящее низкоуровневое описание относится, главным образом, к интерфейсу между ARM и ПЛИС, поскольку через ПЛИС подключена вся периферия сбора данных, а также к интерфейсу между ARM и EEPROM. Здесь изложены только вопросы, относящиеся к возможностям пользовательского программирования ARM в рамках разработанной в L-Card аппаратной архитектуры, и опущены излишние аппаратные подробности, не относящиеся к пользовательским задачам.

Пользователю запрещается производить какие-либо действия, изменяющие аппаратную архитектуру E14-140-M. В частности, не предоставляется возможность пользовательского программирования ПЛИС.

Вся форма изложения материала в этой главе предполагает, что читатель ознакомился с архитектурой контроллера AT91SAM7S256 и, при необходимости, может обратиться к документации Atmel Corporation $^{\rm I}$.

1.1. Соглашения.

Ниже при описании форматов данных, к примеру, 00000101 00010101, слева направо всегда соблюдается порядок: от старшего бита – к младшему и от старшего байта – к младшему.

2. Принципы управления.

2.1. Объекты управления. Зависимость и независимость управления.

ARM является устройством управления по отношению ко всем узлам сбора-хранения-выдачи данных внутри Е14-140-М. Далее рассмотрим эти объекты управления и их особенности.

_

^{1&}lt;u>www.atmel.com</u>

2.1.1. Объекты управления

Перечислим ниже объекты управления, которые соответствуют основному назначению E14-140-M :

- АЦП.
- ЦАП.
- Цифровой ввод-вывод.
- EEPROM
- Регистры конфигурации.

ARM связан с периферией E14-140-М посредством трёх портов:

- По интерфейсу USART осуществляется доступ к регистрам конфигурации и асинхронный цифровой ввод-вывод.
- По интерфейсу SSC производится синхронный ввод данных и управление каналом АЦП.
- Интерфейс SPI применён для асинхронного вывода на ЦАП и обращения к внешней EEPROM.

Также несколько линий портов ввода-вывода использованы для вспомогательных функций (они будут упомянуты позже).

2.1.2. Независимые объекты управления.

Архитектура Е14-140-М на основе ARM позволяет независимо управлять тремя объектами: АЦП, ЦАП и цифровым вводом-выводом. В частности, реализуется независимость частот АЦП и ЦАП в синхронном режиме. Ввод-вывод этих объектов управления может быть независимо запущен или остановлен (естественно, задача различения передаваемых по USB данных разных объектов должна решаться на программных уровнях). Принципиально возможен как синхронный, так и асинхронный (однократный) режим как АЦП, так и ЦАП. Работа с цифровыми линиями ввода-вывода – только асинхронная.

2.1.3. Зависимые объекты управления.

EEPROM и ЦАП

SPI является общим интерфейсом для EEPROM и ЦАП, поэтому работа с ними возможна только поочерёдная.

2.1.4. Условно независимые объекты.

Цифровые линии DI и DO

Это условно независимые объекты, поскольку этот ввод-вывод происходит в рамках одной и той же дуплексной операции по USART. Но независимость асинхронного ввода от вывода технически можно достичь, если ARM всегда будет подставлять в выходной поток

USART последние назначенные данные. Сразу отметим, что разрешение активного состояния выходов DO – общее сразу для всех 16-ти выходов, а параллельный ввод-вывод происходит только в 16-битном формате.

2.1.5. Биты конфигурационного регистра.

Для экономии ресурса ПЛИС биты конфигурации разных объектов сведены в один регистр конфигурации, доступный для записи по USART. Для обеспечения независимости управления этими битами ARM должен хранить копию регистра конфигурации, в которой (каждый раз перед пересылкой значения регистра по USART) осуществлять модификацию требуемых битов конфигурации.

3. Принцип работы ARM с объектами управления.

Здесь будет изложен принцип взаимодействия портов ARM с названными выше объектами управления.

3.1. Работа с АЦП.

3.1.1. Режимы АЦП.

Перед стартом сбора данных синхронизация получения каждого отсчета АЦП может быть настроена на следующие варианты:

- Внутренняя синхронизация (сигнал запуска АЦП порождается от внутреннего генератора, не синхронизирован с каким-либо внешним источником синхронизации и не является источником синхронизации для внешнего устройства).
- Внутренняя синхронизация, режим "Ведущий" (сигнал запуска каждого отсчета АЦП порождается от внутреннего генератора и транслируется через линию SYNC для синхронизации других модулей E14-140-M, настроенных на режим "Ведомый", или для синхронизации других внешних устройств по спаду синхросигнала)
- Внешняя синхронизация режим "Ведомый" (сигнал запуска каждого отсчета АЦП порождается внешним источником синхронизации или другим модулем Е14-140-М, настроенным на режим "Ведущий").

Программно задаётся также источник сигнала старта сбора данных:

- Программный старт (непосредственно по команде от компьютера).
- От внешнего сигнала INT.
- Старт по аналоговому условию в определённом канале АЦП.

Программируется также характер запуска преобразования АЦП:

• Нормальный запуск АЦП (программный или аппаратный сигнал запуска включает периодический внутренний или внешний запуск с установленной частотой).

- Однократный запуск АЦП (вводится только один кадр отсчетов АЦП, после чего сбор данных останавливается до следующего запуска).
- Покадровый запуск АЦП (по аппаратному сигналу запуска вводится кадр отсчетов АЦП, затем модуль переходит в состояние ожидания следующего запуска, и так далее до команды останова.)

Во всех режимах, кроме однократного, останов процесса сбора данных происходит программно.

3.1.2. Инициализация АЦП.

Инициализация АЦП – это последовательное выполнение следующих шагов:

- 1. Конфигурирование SSC порта.
- 2. Настройка выходного интерфейса SSC на циклическое чтение управляющей таблицы из памяти ARM таким образом, чтобы по приходу каждого внешнего фрейма TF из управляющей таблицы в порт SSC посылались 9 бит управления аналоговым трактом. Количество 9-битных слов в одном цикле чтения управляющей таблицы это размер кадра АЦП.
- 3. Выполнение операции по USART "загрузка конвейера управления аналоговым трактом", в ходе которой аппаратура ПЛИС, вырабатывая фрейм ТF, подкачает внутрь ПЛИС два 9-битных слова управления аналоговым трактом и настроит ПЛИС на соответствующий режим синхронизации и старта АЦП, прописанный в параметрах команды. Как признак окончания операции ПЛИС вышлет по USART код 11111111. После этого инициализация АЦП считается законченной это означает, что АЦП готов к сбору данных.
- 4. Установка по USART требуемой частоты АЦП. При этом программируется делитель частоты в ПЛИС от кварцевого генератора.

После этой процедуры инициализации тракт АЦП готов к сбору данных после выполнения условия старта.

Принципиально возможно инициализацию повторять произвольное количество раз при остановленном сборе данных.

3.1.3. Старт-стоп сбора данных АЦП.

Для выполнения этой операции достаточно выполнить передачу команды по USART Старт-стоп сбора данных АЦП в зависимости от режима синхронизации и режима старта сбора данных. Заметим, что в однократном режиме остановку сбора данных сделает сама ПЛИС (стоп по USART в этом режиме делать не требуется).

Отметим сразу, что перед каждым запуском АЦП всегда требуется выполнить этап инициализации АЦП.

3.2. Принцип работы с ЦАП и EEPROM.

У ЦАП и EEPROM имеется один разделяемый интерфейс SPI. Для доступа к EEPROM используется режим SPI MASTER, а для выдачи данных в ЦАП – SPI SLAVE.

Частота вывода данных на ЦАП задаётся делителем частоты в ПЛИС от кварцевого генератора.

Поскольку архитектура микросхемы ЦАП – 2-х ступенчатая (1-ая — ступень входной последовательный регистр, 2-ая ступень — выходной регистр), то введена отдельная операция "предзагрузки последовательного регистра ЦАП", которая должна делаться для первого выводимого отсчета перед дальнейшей выдачей непрерывной последовательности отсчётов в ЦАП.

Все операции вывода на ЦАП всегда проводятся для двух каналов одновременно.

3.3. Принцип работы с цифровым вводом-выводом.

Данные на выход DO и данные со входа DI передаются в рамках одного цикла приёма-передачи, поэтому не возникает какой-либо дополнительной задержки приёма по USART.

Это дуплексная операция на USART. По времени сначала сэмплируются данные DI, а затем выдаются DO.

4. Работа на уровне аппаратуры.

4.1. Назначение сигналов ARM.

Табл. 4-1: **Назначение сигналов** *ARM*-кон троллера

Порт –	Соответству	Направле-	Сигнал, назначение
используемая	ющий порт	ние	
функция			
PGMEN1	PA1	Вход	Подтянут к единице резистором.
PA3	PA3	Выход	Управление светодиодом "GL".
			"0" – не горит
			"1"- горит
Таймеры задани	я частоты ЦАП		
TCLK0	PA4	Вход	"Вход цепочки таймеров" – С ПЛИС подаётся частота
			8,000 МГц
TIOA2	PA26	Выход	Резервирован
Порт UART			
PGMEN2/SCK0	PA2	Вход	Подтянуты к единице резисторами, когда РАЗ1 = 0, то
			на вход подаётся внешняя частота UART
RXD0	PA5	Вход	Вход USART
TXD0	PA6	Выход	Выход USART
Порты, отведённ	ные для технолог	ических нужд	
PA7, PA8, PA9,	PA7, PA8, PA9,	Входы	Технологические функции. Нельзя задействовать для
PA10	PA10		пользовательских задач.
Порт SPI			
NPCS0	PA11	Вход	Выбор канала SPI (режим SLAVE) для вывода на
			ЦАП
NPCS3	PA22	Выход	Выбор канала SPI (режим MASTER) ARM-ом для
			обращения к EEPROM M95080
MISO	PA12	Вход/выход	Вход – MASTER, выход – SLAVE
MOSI	PA13	Выход	Используется как выход только в режиме MASTER
SPCK	PA14	Вход-выход	Выход – MASTER, вход – SLAVE

Порт – используемая	Соответству ющий порт	Направле- ние	Сигнал, назначение
функция			
Порт SSC		-	
TF	PA15	Вход	Внешний фрейм передачи
RF	PA20	Вход	Внешний фрейм приёма
RK, TK	PA16,PA19	Входы	Внешние синхросигналы приёма и передачи, объединённые вместе
TD	PA17	Выход	Выход для передачи слова управления аналоговым трактом
RD	PA18	Вход	Вход данных АЦП
Boot mode	<u>'</u>		
PA21	PA21	Вход	Чтение состояния перемычки режима загрузки "0" – перемычка установлена (нормальный режим) "1" – перемычка снята (альтернативный режим)
Сервисные сигн	іалы		
PA31	PA31	Выход	Сигнал LOW_POWER: "На вход" или " на выход 1" – режим низкого энергопотребления (выключается генератор логики ПЛИС, функции ввода-вывода по USART, SSC и SPI перестают работать). "На выход 0" – активный режим.
PA25	PA25	Вход-выход	В состоянии "на выход" активным "0" (по уровню) сбрасывает логику ПЛИС и переводит в режим низкого энергопотребления, активная "1" отменяет сброс логики ПЛИС. В состоянии "на вход" – функция монитора состояния запуска системы питания Е14-140-М: "0" – идёт процесс запуска системы питания Е14-140 (состояние неготовности). "1" – система питания запущена (power good).
DAC SENSE	_		
PA23	PA23	Вход	Сигнал физического присутствия модуля ЦАП "0" – присутствует "1" – отсутствует
ARM JTAG	1	1	
TMS, TCK, TDI, TDO, NRST	-	Стандартное для JTAG	Стандартные линии JTAG ARM, выходящие на JTAG- разъём
USB			
DDM, DDP	-		Линии D+ и D- интерфейса USB
PGMEN0	PA0	Вход- выход	Подтянут к единице резистором. Выходное состояние "0" отключает подтяжку линии D+ на интерфейсе USB

4.2. USART.

По USART производится конфигурация E14-140-M и асинхронный цифровой вводвывод – DI/DO.

USART по отношению к аппаратуре выступает задатчиком: на один, два или три переданных командных байта в ответ аппаратура может выслать два, один или ни одного байта, в зависимости от контекста команды (Табл. 4-2).

Настройки USART (регистр US MR)

- 1. USART_MODE = 0 (нормальный)
- 2. USCLKS = 3 (тактирование от SCK 8 М Γ ц)
- 3. CHRL = 3, MODE9 = 1 (длина слова 9 бит)
- 4. SYNC = 1 (синхронный режим)
- 5. PAR = 4 (без контроля четности)
- 6. NBSTOP = 0 (один стоп-бит)
- 7. CHMODE = 0 (нормальный)
- 8. MSBF = 1 (старшим битом вперед)

Формат передачи

- **1.0000хххх** байт кода команды;
- 0. хххххххх байт параметров команды.

После байта кода операции могут быть два, один или ни одного байта параметров.

Формат приёма

ххххххх – ни одного, один или два ответных байта.

В операциях, где используются 8-битные данные, *младший* бит ответа (Y) игнорируется.

Табл. 4-2: Система команд USART

Команда по	Ответ по	Описание операции
USART	USART	
1.0000001	111111111	Загрузка конвейера управления аналоговым трактом.
0.aass00mm		
		mm – режим синхронизации АЦП (каждого отсчета):
		00 – внутренний (частота определяется установленным делителем, см.
		ниже), без трансляции тактовых импульсов на выход SYN.
		01 – внутренний (ведущий), активный rising edge (длительность
		импульса 2 мкс). При установке этого режима линия SYN переходит
		на выход.
		10 – внешний (ведомый), синхронизация по входу SYN, активный
		rising edge (как у прежних E14-140)
		11 – внешний (ведомый), синхронизация по входу SYN, активный
		falling edge
		ss – режим синхронизации старта АЦП (начала сбора данных):
		00 – программный старт
		01 – внешний старт по аналоговому уровню в заданном канале
		10 – внешний старт по входу INT, активный rising edge
		11 – внешний старт по входу INT, активный falling edge (как у
		прежних Е14-140, Е14-440)
		аа – режим аналоговой синхронизации:
		00 – по условию "выше порога"
		01 – по условию "ниже порога"
		10 – по переходу порога "снизу вверх"
		11 – по переходу порога "сверху вниз"
1.0000010	без ответа	Старт-стоп сбора данных АЦП.
0.00000bbb		bbb – тип операции:
		хх0 – останов АЦП (для любого режима)
		х01 – запуск АЦП в потоковом режиме
		011 – запуск АЦП на 1 кадр (для программного рестарта снова
		выполнить эту команду, при повторном внешнем старте
		перезапустится автоматически)
		111 – запуск АЦП на 1 кадр (без перезапуска при повторном внешнем
1 00000011	<u></u>	старте)
1.0000011	без ответа	Запись в ПЛИС величины межкадровой задержки:
0.ddddddd		ddddddd - количество периодов частоты АЦП от 0 до 255
1.00000100	без ответа	Общий конфигурационный регистр
0.00000mre		е – разрешение цифрового выхода DO:
		0 – выход DO в 'Z' состоянии
		1 – выход DO в активном состоянии
		r – сброс ЦАП:
		0 – линия DAC CLR в активном состоянии
		1 – линия DAC CLR в неактивном состоянии
		(примечание: линия DAC CLR работает синхронно, т.е. сброс ЦАП в
		нулевое напряжение произойдет только в случае выдачи какого-либо
		отсчета на ЦАП.)
		m – разрешение для ПЛИС стать SPI-мастером для осуществления
		операций с ЦАП:
		0 – ПЛИС запрещено быть мастером (режим обращения к EEPROM)
		1 – ПЛИС разрешено быть мастером (режим работы с ЦАП)

Команда по USART	Ответ по USART	Описание операции
1.00000101 0.kkkkkkkk 0.kkkkkkkk	без ответа	Установка делителя частоты АЦП: kkkkkk kkkkkkk – делитель частоты АЦП (старший байт первым). Частота F_{adc} определяется по формуле: $F_{adc} = 8000000 / (K_{adc} + 1) \Gamma \mu$. Минимальное значение $K_{adc} = 39 (200 \ \mbox{к}\Gamma \mu$).
1.00000110 0.iiiiiiii 0.iiiiiiii	;;;;;;;;;;;;;;1	Цифровой ввод-вывод: Это дуплексная операция. По времени сначала сэмплируются данные DI, а затем выдаются DO:
		іііііііі іііііііі — данные на выход DO (старший байт первым) јіјјіјіј јіјјіјі — данные с входа DI (старший байт первым) Данные на выход DO и данные с входа DI передаются в рамках одного цикла приёма-передачи, поэтому не возникает какой-либо дополнительной задержки приёма по USART.
		v – признак версии ПЛИС: 1 – версия 1 0 – версия 2 или выше (номер можно прочитать командой 1.00001110)
1.00000111	111111111	Асинхронные операции ЦАП:
0.000000y		у – тип операции:
		 0 – предзагрузка последовательного регистра ЦАП из SPI (с удержанием диаграммы на последнем тактовом импульсе в ожидании команды асинхронного вывода или синхронного пуска) 1 – асинхронный вывод в ЦАП (в версии 1 – с загрузкой из SPI
		следующего отсчета; в версиях 2 и выше – без загрузки)
1.00001000 0.h000nnnz	в версии 1:	Запуск/останов ЦАП:
0.houonnz	без ответа	z – тип операции:1 – запуск синхронного вывода на ЦАП с частотой, определяемой
	в версии 2:	делителем в поле nnn
	если z = 0, то после останова	0 – останов синхронного вывода на ЦАП (поле nnn в норме должно быть таким же, как в предшествовавшей команде пуска).
	выдается ответ 111111111	nnn — делитель частоты ЦАП (N = 0 7). При этом частота вывода на оба канала ЦАП будет равна F_{dac} = 200000 / (N + 1) Γ ц
		h novem and months and make HATI
		h – режим синхронизации пуска ЦАП: 0 – программно, сразу же после получения команды (с
		неопределённой начальной фазой относительно АЦП)
		1 – синхронно с пуском АЦП при условии, что данная конверсия АЦП относится к первому логическому каналу в кадре. После запуска
		частота вывода определяется установленной частотой F_{dac}
1.00001001	без ответа	Задание условия аналоговой синхронизации:
0.cccccc	500 omno-e	ссссссс – управляющее слово (управления аналоговым трактом) для аналоговой синхронизации
1.00001010 0.xxSDDDDD	без ответа	sdanorosou синхронизации SDDDDD DDDDDDD – величина порога аналоговой синхронизации
0.DDDDDDDD		(знаковое 14-битное целое в дополнительном коде) xx – разряды не задействованы
1.00001110	vvvvvvvv	В версии 2 и выше: чтение номера версии ПЛИС.
0.xxxxxxx		vvvvvvvv – инвертированный номер версии ПЛИС. Регистр присутствует начиная с версии 2, поэтому следует сначала
		прочитать признак версии в команде 1.00000110

4.3. SSC.

Конфигурация

- 1. RK, ТК внешние (подано с ПЛИС 8 МГц)
- 2. RF, RK внешние (источником фреймов является ПЛИС)

Приём данных АЦП

Регистр SSC RCMR:

- 1. CKS = 2 (тактирование от входа RK)
- 2. CKO = 0
- 3. CKI = 1 (RD читается по фронту RK)
- 4. CKG = 0
- 5. START = 4 (по спаду RF)
- 6. STOP = 0
- 7. STTDLY = 0
- 8. PERIOD = 0

Peгистр SSC_RFMR:

- 1. DATLEN = 15 (длина слова 16 бит)
- 2. LOOP = 0
- 3. MBBF = 1 (старшим битом вперед)
- 4. DATNB = 0 (одно слово на фрейм)
- 5. FSLEN = 0 (без синхробитов)
- 6. FSOS = 0
- 7. FSEDGE = 1

Формат данных АЦП

sssd dddd dddd (дополнительный код)

Передача 9-битного слова управления аналоговым трактом

Peгистр SSC_TCMR:

- 1. CKS = 2 (тактирование от входа TK)
- 2. CKO = 0
- 3. CKI = 1 (ПЛИС читает TD по спаду TK)
- 4. START = 4 (по спаду TF)
- 5. STTDLY = 0
- 6. PERIOD = 0

Регистр SSC TFMR:

- 1. DATLEN = 8 (длина слова 9 бит)
- 2. DATDEF = 0
- 3. MBBF = 1 (старшим битом вперед)

- 4. DATNB = 0 (одно слово на фрейм)
- 5. FSLEN = 0 (без синхробитов)
- 6. FSOS = 0
- 7. FSDEN = 0
- 8. FSEDGE = 1

Формат 9-битного слова управления аналоговым трактом (поля <5..4> <3..0>)

Режим	<54>	<30>
Дифференциальный, канал 1	00	0000
Дифференциальный, канал 2	00	0001
Дифференциальный, канал 3	00	0010
Дифференциальный, канал 4	00	0011
Дифференциальный, канал 5	00	0100
Дифференциальный, канал 6	00	0101
Дифференциальный, канал 7	00	0110
Дифференциальный, канал 8	00	0111
Дифференциальный, канал 9	00	1000
Дифференциальный, канал 10	00	1001
Дифференциальный, канал 11	00	1010
Дифференциальный, канал 12	00	1011
Дифференциальный, канал 13	00	1100
Дифференциальный, канал 14	00	1101
Дифференциальный, канал 15	00	1110
Дифференциальный, канал 16	00	1111
Режим измерения собственного нуля	01	XXXX
Однофазный, канал 1	10	0000
Однофазный, канал 2	10	0001
Однофазный, канал 3	10	0010
Однофазный, канал 4	10	0011
Однофазный, канал 5	10	0100
Однофазный, канал 6	10	0101
Однофазный, канал 7	10	0110
Однофазный, канал 8	10	0111
Однофазный, канал 9	10	1000
Однофазный, канал 10	10	1001
Однофазный, канал 11	10	1010
Однофазный, канал 12	10	1011
Однофазный, канал 13	10	1100
Однофазный, канал 14	10	1101
Однофазный, канал 15	10	1110
Однофазный, канал 16	10	1111
Однофазный, канал 17	11	0000
Однофазный, канал 18	11	0001
Однофазный, канал 19	11	0010
Однофазный, канал 20	11	0011
Однофазный, канал 21	11	0100
Однофазный, канал 22	11	0101
Однофазный, канал 23	11	0110
Однофазный, канал 24	11	0111
Однофазный, канал 25	11	1000
Однофазный, канал 26	11	1001
Однофазный, канал 27	11	1010
Однофазный, канал 28	11	1011
Однофазный, канал 29	11	1100

Режим	<54>	<30>
Однофазный, канал 30	11	1101
Однофазный, канал 31	11	1110
Однофазный, канал 32	11	1111

Поддиапазон	<76>
±10 B	00
±2,5 B	01
±0,5 B	10
±0,15 B	11

Бит <8> является маркером конца кадра. Бит 8 должен устанавливаться в ноль во всех строках управляющей таблицы, кроме последней. На этот маркер реагирует ПЛИС, который вставляет после конца кадра межкадровую задержку установленной величины.

4.4. SPI

- Режим Master (канал 0 SPI) используется для обращения к EEPROM M95080, используя сигнал NPCS0 в качестве сигнала CS (активным нулём) этого EEPROM. Настройки и режим канала SPI в этом режиме выбираются исходя из требований к EEPROM, интерфейс которой адаптирован под SPI.
- Режим SLAVE (канал 3 SPI) используется для вывода данных на ЦАП.

При переходе в режим SLAVE (по команде USART разрешения ПЛИС стать мастером) ПЛИС выходит активными выходами на линии NPCS3 (активный ноль), а также на линию SPCK. Состояние линии MOSI – не определено. В этом режиме используется SPI MODE=0 (CPOL=0, NCPHA=1). При запуске вывода на ЦАП ПЛИС выкачает из SPI 4 байта, старшим битом вперёд, в следующей последовательности:

- 1. старший байт 1-го канала ЦАП,
- 2. младший байт 1-го канала ЦАП,
- 3. старший байт 2-го канала ЦАП.
- 4. младший байт 2-го канала ЦАП.

Поступившие в ЦАП два 16-битных отсчёта (в дополнительном коде) появятся на выходе ЦАП.

Поскольку эти 4 байта ПЛИС будет выкачивать подряд (без пауз между байтами) с частотой 8 МГц, то ARM должен всегда организовывать DMA на запись данных в SPI (иначе в программном режиме ARM может не успеть).